
LEAN Supply Chain Planning

The New Supply Chain Management Paradigm for Process Industries to Master Today's VUCA World

LEAN Supply Chain Planning

The New Supply Chain Management Paradigm for Process Industries to Master Today's VUCA World

Josef Packowski

CRC Press is an imprint of the Taylor & Francis Group, an **informa** business

A PRODUCTIVITY PRESS BOOK

K21445_C000.indd 3 04-11-2013 10:53:38

CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742

© 2014 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works

Printed on acid-free paper Version Date: 20130830

International Standard Book Number-13: 978-1-4822-0533-6 (Hardback)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe.

Library of Congress Cataloging-in-Publication Data

Packowski, Josef.

LEAN supply chain planning: the new supply chain management paradigm for process industries to master today's vuca world / Josef Packowski.

pages cm

Includes bibliographical references and index.

ISBN 978-1-4822-0533-6 (hardcover)

1. Business logistics. 2. Lean manufacturing. I. Title.

HD38.5.P33 2014

658.701--dc23

2013031214

Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com

and the CRC Press Web site at http://www.crcpress.com

K21445_C000.indd 4 04-11-2013 10:53:38

Contents

Introductio	on: W	hat the	Book Is All Aboutxvii
			xxvii
About the .	Autho	or and t	he Motivation for This Bookxxxv
	F	PART I	Why LEAN SCM Today?
Chapter 1	Supp	oly Cha	in Management in Process Industries3
	1.1	Supply	Chain Management Must Master
		the VI	UCA World5
		1.1.1	Supply Chain Management Orchestrates
			Global Functions and Networks5
		1.1.2	Key Pain Points in Supply Chain
			Organizations Today6
		1.1.3	Why Leadership Is Concerned about
			the Impact of Volatility7
	1.2	Supply	Chain Planning in the VUCA World Today 8
		1.2.1	
			of Supply Chain Management9
		1.2.2	The VUCA World Poses New Challenges
			to Supply Chain Planning11
		1.2.3	Today's Supply Chain Planning
			Approaches and Their Limitations17
	1.3	Why V	We Need a Paradigm Shift in Supply Chain
		•	ing Now21
		1.3.1	
			Deal with the VUCA World22
		1.3.2	Common Lean Approaches Are
			Insufficient for Global Supply Chain
			Synchronization27
		1.3.3	How to Back Out of the Dead End
			of Today's Planning32
	Chai	pter Sun	nmary35
		L	•

K21445_C000toc.indd 7 04-11-2013 10:52:19

vii

Chapter 2	Guiding Principles of LEAN SCM Planning: Facing VUCA Challenges					
	•					
	2.1		Demand: How to Cope with Rising			
		Dema	nd Variability	37		
		2.1.1	Accept Uncertainty and Eliminate the			
			Need for Certainty in Execution	38		
		2.1.2	A View of Aggregated Demand: Be			
			Prepared for Consumption-Driven			
			Supply	39		
		2.1.3	Stop Using Forecasts to Trigger			
			Manufacturing: Respond to Real			
			Consumption	41		
	2.2	LEAN	Supply: How to Get a Grip on Supply			
		Uncer	tainty and Reliability	43		
		2.2.1	Manage Demand Spikes with Planned			
			and Right-Sized Safety Stock Buffers	43		
		2.2.2	Level Production Plans to Create Flow			
			and Stabilize Utilization	45		
		2.2.3	Use Cyclic Production Patterns to			
			Achieve a Common Takt and Regularity	46		
	2.3	LEAN	Synchronization: How to Master			
		Comp	lexity and Ambiguity	48		
		2.3.1	Separate Planning to Slice Complexity			
			for End-to-End Synchronization	49		
		2.3.2				
			Chain Planning	50		
		2.3.3				
			Environment for Synchronization	51		
	Chap	oter Sun	nmary			
Chantar 3	Eun	dament	als of LEAN SCM Dlanning, A			
Chapter 3		Fundamentals of LEAN SCM Planning: A Paradigm Shift in Planning				
	1 ala	digiii 5	iiitt iii i iaiiiiiig	50		
	3.1		Is the Most Suitable Supply Chain			
		Plann	ing Approach to Follow?	56		
		3.1.1	The Lean Supply Chain Is More about			
			Waste Elimination and Cost Efficiency	56		
		3.1.2	The Agile Supply Chain Is More about			
			Responsiveness and Customer Service	57		

K21445_C000toc.indd 8 04-11-2013 10:52:19

		3.1.3	The Resilient Supply Chain Is More
			about Risk-Avoidance and Robustness58
		3.1.4	Trade-Offs among the Common
			Paradigms in Supply Chain Management59
		3.1.5	How LEAN SCM Combines and Builds
			upon a New Planning Paradigm61
	3.2	The Bu	nilding Blocks for LEAN SCM Planning:
		Conce	pts and Highlights66
		3.2.1	Flexible Rhythm Wheels Enable Cyclic
			Planning while Responding to Variability67
		3.2.2	Dynamic Safety Buffers in Planning for
			Two-Sided Variability Management71
		3.2.3	Cycle Times and Inventory Targets
			Aligned to Global Takt for Synchronization.73
		3.2.4	Separation of Tactical Pre-
			Parameterization and Planning to
			Reduce Complexity75
		3.2.5	Enabling IT to Create Global Visibility
			and Staying Power for Sustainability78
	3.3	How L	EAN SCM Planning Drives Corporate
		Succes	s in the VUCA World81
		3.3.1	Creating a Step Change in Supply Chain
			Performance81
		3.3.2	Better Service Leads to Customer
			Satisfaction and True Competitive
			Advantages82
		3.3.3	World-Class Operational Supply Chain
			Performance Means Financial Success 84
	Chap	ter Sum	ımary85
PA	RT II	How	to Design and Build LEAN SCM
Chapter 4	Prepa	are You	r Supply Chain for LEAN SCM89
	4.1	Segme	nt and Strategize Your Supply Chain 90
		4.1.1	How Many Supply Chain Strategies Are
			Needed?90
		4.1.2	Structure Customers and Products to
			Build Supply Chain Segments92
			· · · · · · · · · · · · · · · · · ·

K21445_C000toc.indd 9 04-11-2013 10:52:19

x • Contents

		4.1.3	Assigning Strategies to Defined Supply	
			Chains	95
	4.2	Aligni	ing the Supply Chain from a Top-	
		Down	Perspective	99
		4.2.1	Create End-to-End Transparency in	
			Supply Chains	99
		4.2.2	Identify and Assess Gaps to Improve	
			Supply Chain Synchronization	105
		4.2.3	Adopt Three Measures for Preparing	
			the Supply Chain	113
	4.3	Aligni	ing the Supply Chain from	
		a Bott	om-Up Perspective	. 120
		4.3.1	Gain Transparency into Local Value	
			Streams	121
		4.3.2	Analyze Value Streams to Prepare the	
			Shop Floor for LEAN SCM	. 123
		4.3.3	Aim for Leveled Flow Design	
	Char	oter Sun	nmary	
	1		,	
Chapter 5	Strat	tegic LE	EAN Supply Chain	
•			onfiguration	. 139
	5.1		to Produce: Replenishment Modes	
	5.1		Sell What You Make: Forecast-Based	141
		5.1.1		140
		F 1 2	Push Replenishment	142
		5.1.2	Make What You Sell: Consumption-	1.42
	5 0		Based Pull Replenishment	
	5.2		o Produce: Production Modes	150
		5.2.1	Kanban and Its Advancements for	
			Process Industries	150
		5.2.2	Product Wheels and Rhythm Wheels for	
			Cyclic Production Planning	154
		5.2.3	How to Manage Variability with	
		_	Different Rhythm Wheel Types	158
	5.3		Chain Mode Selection: Combining	
		Dwada	ction and Replenishment Modes	167
			1	
		5.3.1	Define the Configuration Scope of the Supply Chain Segment	

K21445_C000toc.indd 10 04-11-2013 10:52:19

		5.3.2	Analyze Key Impact Dimensions	
			of Mode Selection	170
		5.3.3	Select the Appropriate Supply Chain	
			Modes	182
		5.3.4	Evaluate Your Decision Quantitatively	185
	5.4	The St	trategic Renewal Process to Configure	
			Supply Chains	188
		5.4.1	What Information Base Is Needed on	
			Strategic Level?	189
		5.4.2		
			Chain Modes	191
		5.4.3		
			Regular Mode Renewal	193
		5.4.4	Who Is Involved to Enable Governance	
			for Supply Chain Agility?	194
	Char	oter Sur	nmary	
	1		,	
Chapter 6	Tact	ical LE	AN Supply Chain Planning	
•			zation	199
	6 1	Sattin	a IIn the Devemptors for IEAN	
	6.1		g Up the Parameters for LEAN	201
			Classic Physher Wheel Design to Empha	201
		6.1.1	Classic Rhythm Wheel Design to Enable	202
		(12	Flow in Stable Environments	203
		6.1.2	Breathing Rhythm Wheel Design to	211
		(12	Manage Higher Demand Variability	211
		6.1.3	0 7	216
	()	Catt	Manage Diverse Product Portfolios	216
	6.2		g Up the Parameters for LEAN	222
		-	nishment Modes	222
		6.2.1		222
			Variability and Uncertainty	223
		6.2.2	e	
			Enable Consumption-Based LEAN	
			Replenishment	227
	6.3	•	ronize Parameters to Achieve an End-to-	
		End L	EAN Supply Chain	234

K21445_C000toc.indd 11 04-11-2013 10:52:19

		6.3.1	Synchronize Supply Chain Cycle Times	
			to a Global Takt	236
		6.3.2	Build on Dynamic Inventory Target	
			Setting to Smooth Cycle Time Oscillation	245
	6.4	The Ta	actical Renewal Process to Parameterize	
		LEAN	Supply Chains	253
		6.4.1	What Information Base You Need	255
		6.4.2	Establish Regular Renewal of Planning	
			Parameters	256
		6.4.3	Alignment of Planning Parameters for	
			the LEAN Supply Chain	263
		6.4.4	Who Is Involved in Keeping the Supply	
			Chain LEAN through Synchronized	
			Parameters?	264
	Chap	oter Sun	nmary	267
	-		•	
01			LIDANIC I OL : DL :	
Chapter 7	_		l LEAN Supply Chain Planning	260
	Exec	cution		269
	7.1	How t	o Execute Planning and Sequencing with	
		Rhyth	m Wheels	270
		7.1.1	The Replenishment Trigger Report	
			as a Link between Production and	
			Replenishment	271
		7.1.2	Handling of Demand Signals with	
			Rhythm Wheels	274
	7.2	How t	o Level Production with Factoring	
		7.2.1	Use Cycle Time Boundaries to Stabilize	
			the Asset Takt	277
		7.2.2	Use Upper Factoring When the Cycle	
			Becomes Too Long	279
		7.2.3	Use Lower Factoring When the Cycle	
			Becomes Too Short	282
	7.3	Effect	ive Monitoring of Planning Execution in	
			SCM	284
		7.3.1	What Should Be Monitored?	284
		7.3.2	Operational LEAN Production KPIs to	
			Monitor Asset Performance	286

K21445_C000toc.indd 12 04-11-2013 10:52:19

		7.3.3	Operational LEAN Replenishment KPIs	200
	Chap	oter Sun	to Evaluate Inventory Parameterization	
	PA		II What to Implement and nsform for LEAN SCM	
Chapter 8	Buile	d an Oı	ganization for LEAN SCM	. 297
	8.1	Below	the Ground: The Prerequisites	
			AN SCM	. 299
		8.1.1	,	201
		0.1.2	for LEAN SCM	. 300
		8.1.2	Ensuring Leadership and Commitment across Functional Borders	202
		8.1.3	Shift in Mindsets and Accountabilities	. 302
		8.1.3	in the SCM Community	20/
	8.2	Above	e the Ground: The Visible Enablers	. 304
	0.2		AN SCM	305
		8.2.1	What Is the Right SCM Organization	. 507
		0.2.1	Model for LEAN SCM?	305
		8.2.2	Integration of LEAN SCM Processes	. 507
		0.2.2	with the Existing Planning Processes	
			Framework	310
		8.2.3		
		0.2.0	Renewal Processes	316
	8.3	Manas	ging Change and Transition for LEAN SCM	
		8.3.1	Focus Areas of Change Management	
		8.3.2	Key Activities of Change Management	
			Valuable Tools for Change Management	
			in LEAN SCM	. 324
	Chap	oter Sun	nmary	
Chapter 9	Perfo	ormano	re Management for LEAN SCM	. 329
	9.1	Role o	f Performance Management in LEAN SCM	. 330
		9.1.1	Key Objectives of Performance	
			Management for LEAN SCM	33(
			-	

K21445_C000toc.indd 13 04-11-2013 10:52:19

		9.1.2	Orchestrating Supply Chain Planning	
			Processes Successfully	333
		9.1.3	How the LEAN SCM Paradigm Changes	
			Your Performance Management	335
	9.2	How to	o Measure LEAN SCM Performance	337
		9.2.1	Metrics to Link Tactical and Operational	
			LEAN Supply Chain Planning	338
		9.2.2	Metrics for Linking Strategic and	
			Tactical LEAN Supply Chain Planning	339
		9.2.3	Metrics for Assessing the Maturity of a	
			Supply Chain for LEAN SCM	. 341
	9.3	Five Po	oints to Consider for Successful	
		Perfor	mance Management	. 344
		9.3.1	Develop a Balanced and Comprehensive	
			System of Metrics	. 344
		9.3.2		
			Performance Tracking	. 345
		9.3.3	Systematic and Regular Performance	
			Analysis for Sustainability	. 347
		9.3.4	•	
			Use Data Management and IT Systems	
			for Support	. 349
	Chap	ter Sum	nmary	
	1		•	
		_		
Chapter 10	The	Plannir	ng System Landscape for LEAN SCM	. 353
	10.1	The Ev	rolution of IT Planning Systems	. 354
			MRP II: Consideration of Capacity but	
			Captured in the Automation Trap	355
		10.1.2	ERP: Functional Integration but Lost in	
			the Details	. 356
		10.1.3	APS: Supply Chain Integration but	
			Caught in the Optimization Trap	357
		10.1.4	The Forecast Myth: An Overarching	
			Obstacle	358
		10.1.5	IT for LEAN Planning: How to Escape	
			the Optimization Trap and the Forecast	
			Myth	358
			-	

K21445_C000toc.indd 14 04-11-2013 10:52:19

	10.2	Enabli	ng LEAN Planning: How to Leverage	
		Past IT	'Investments	360
		10.2.1	Enterprise Resource Planning	361
			Master Data Management	
		10.2.3	Market Demand Planning (APS Module)	362
			Supply Network Planning (APS Module)	
		10.2.5	Detailed Planning and Scheduling	
			(APS Module)	363
	10.3	LEAN	Planning Add-Ons to Complete the IT	
				365
		10.3.1	Configuring and Renewing Tactical	
			LEAN SCM Parameters	366
		10.3.2	Planning and Adjusting Production	
			Based on Actual Consumption	368
		10.3.3	Performance Monitoring for the	
			Renewal Process	372
	Chap	ter Sum	mary	379
Chapter 11	The l	LEAN S	SCM Journey	381
	11.1	Buildi	ng Strong Commitment and Leadership	
		for LE	AN SCM	382
	11.2	Creatii	ng a Holistic LEAN SCM Architecture	384
	11.3	Establi	shing LEAN SCM Program Management.	388
	Chap	ter Sum	mary	390
	PA	RT IV	How Your Industry Peers	
			d Benefits by LEAN SCM	
		Guille	Denotite by Editi (Seli-	
Chapter 12	Read	How T	op-Industry Players Share Their	
_	Expe	riences	with LEAN SCM	393
	12.1	Motiva	ation and Approaches to LEAN SCM	393
			AstraZeneca's Lean SCM Journey	
			Eli Lilly's Synchronized Lean Production.	
			Buffer Management at Novartis	
			Leveled Flow Design to Enable LEAN	
			Planning	417

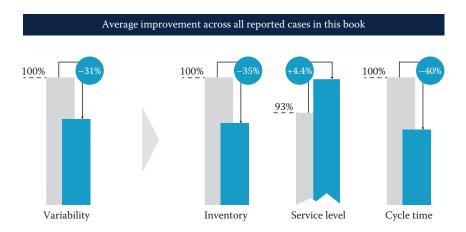
K21445_C000toc.indd 15 04-11-2013 10:52:19

xvi • Contents

	12.1.5	AstraZeneca Excellence with Rhythm	
		Wheel Takted Site	425
	12.1.6	The LEAN Production Initiative at PCI:	
		A Company of BASF	432
12.2	Why L	EAN SCM: Summary of Key Benefits	437
Bibliography			439
Index			441

K21445_C000toc.indd 16 04-11-2013 10:52:19

Introduction: What the Book Is All About


Today, many global supply chains in process industries are neither equipped nor orchestrated to cope effectively with the new VUCA world we are facing. VUCA—volatility, uncertainty, complexity, and ambiguity—is an acronym that originated in the military back in the late 1990s and was quickly adapted to the business environment. It describes precisely the conditions of increasing variability and uncertainty of demand, and the complexity and ambiguity of product portfolios and supply chain networks in which companies operate today.

Facing the threat of increasing VUCA challenges, manufacturers are left grasping for what it means to build a superior supply chain management (SCM) organization that is capable of managing these challenges effectively. Which enablers for agility are required to manage future VUCA dynamics? Those in global network structures (the network footprint) or others in the extended supplier relationship configuration (contract manufacturers, service providers, or suppliers)? Which aspects of today's operational and organizational lean initiatives are delivering tangible cost and efficiency results? How can supply chain organizations sustain reliable supply in an era of ever-widening virtualization of supply networks and increasing exposure to global risk? Finally, where can supply chain managers turn for the answers to these questions?

In response to these challenges, CAMELOT Consulting Group has worked jointly with leading research institutes and key global industry players to come up with a "New Supply Chain Planning Paradigm" to face the VUCA challenges in SCM in a new way. The paradigm change in orchestrating supply chains is best explained by laying out a new approach to managing variability, uncertainty, and complexity in today's planning processes and systems.

A few pioneering supply chain organizations in the process industry have already embraced the new way of coordinating and synchronizing their global networks. The reports and industry cases included in this book (see Figure 0.1).

xix

FIGURE 0.1 A step change in variability management improves key supply chain metrics.

Before we move on to present this new supply chain planning approach, we want you to clearly understand the need for a paradigm shift first. In process industries, today's usual supply chain planning practices aim to determine manufacturing decisions up to 12 months prior to delivering actual products to the customers. To do so, planners reach out to their sales and marketing colleagues and ask them for forecasts—preferably as detailed and accurate as possible at the SKU (stock-keeping unit) level. It is obvious that the supply chain performance resulting from such a forecastbased SCM approach is directly linked to the quality of sales forecasts. Therefore, it is understandable that all excellence initiatives in the past have started inevitably by attempting to improve on forecast accuracy, establishing the forecast myth that all activities could be perfectly planned and which still dominates corporate practices. However, ask yourself if we do not all experience difficulty in determining our own personal futures 12 months out, even regarding the subjects we ought to know most about. How then can we expect our sales organizations to know what the future holds for our products in volatile marketplaces at this detailed level of granularity?

So the real issue in SCM is not about improving the accuracy of the sales forecast and reducing the amount of uncertainty in the future, it is rather about *eliminating the need for certainty* in operational planning. We have therefore anchored our LEAN SCM Planning approach in freeing supply chain planners from the need for certainty, ushering in a paradigm change for most planning practices.

K21445_C000f.indd 20 04-11-2013 10:49:56

A major change that accompanies our *LEAN SCM Planning paradigm* is the management of demand variability. In traditional planning concepts, this is solved in a one-sided way, through planning and scheduling of manufacturing capacities only. This is because in today's supply chain practices, and in the ERP or APS systems that support them, safety stock levels are used as fixed planning parameters and not touched from a planning perspective to buffer variability. This has negative consequences for operational performance and the way in which companies react to demand fluctuations in planning. In this way, the traditional planning approaches represent a conceptual dead-end for today's variability management problems.

Within the new LEAN SCM Planning paradigm, we are *mastering variability with a two-sided approach*. We manage the demand variability in supply chain planning now on both sides, on manufacturing capacities and in inventories. To be more precise, the safety stock elements in all SKU-based inventories are now actively used in planning runs, as they have been designed for, to level replenishment signals and keep market noise out of manufacturing to the extent possible. To make this happen, we have developed a disciplined approach to the *dynamic adaptation of inventory target levels* to changing conditions along the supply chain. This allows SCM to keep a key component of demand variability—demand peaks—out of manufacturing, smoothing capacity utilization, and spending less time resolving production planning and schedule problems. This might sound intuitive, but represents a paradigm shift in the operation of today's planning processes and systems.

The conceptual foundation for managing variability and leveling capacity utilization in local manufacturing sites is the *cyclic scheduling* with "product wheels." Industry experts such as Ian F. Glenday, Peter L. King, and Raymond C. Floyd have already been able to connect the general lean (manufacturing) concepts, and the underlying elements of simplicity, flow and pull, with physical restrictions that are typical in process industries. These concepts have already been influential in many process manufacturing organizations. We have built on these experiences but needed to go further to apply product wheels in a high-product-mix and high-volatility environment—which we named "*Breathing*" and "*High-Mix*" *Rhythm Wheels*. They are built around optimal product sequences and cycle times. But the most valuable conceptual advancement we have incorporated is our approach to manage variability with two control parameters: the cycle time boundaries. With these new conceptual elements, we are providing

appropriate flexibility in manufacturing to enable companies to manage increasing market volatility, and we also hold the key for smoothing variability and volatility propagation upstream along the supply chain in our hands.

The LEAN SCM Planning concepts we present here have been worked out in light of and for the purpose of *end-to-end supply chain synchronization*. So the central question is how to manage multi-echelon synchronization along supply chains in process industries, with typically long lead times starting, for example, with chemical conversion processes and moving downstream to shorter physical bulk production and packaging processes? In particular, how should supply chain organizations apply cyclic planning at manufacturing sites while aiming for real consumption-based pull replenishment?

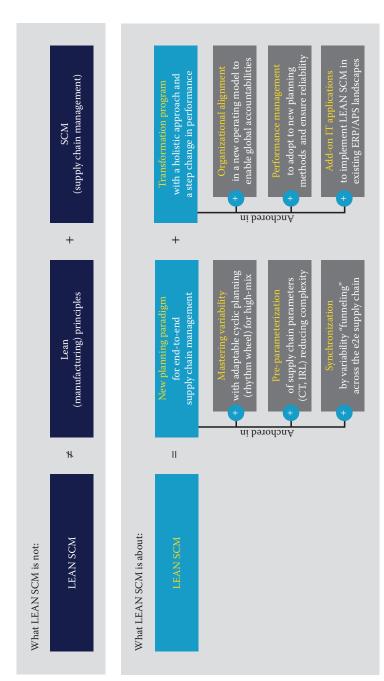
In response, we have formalized a "global takt" for synchronization and achieving end-to-end flow. In a stable supply chain environment, this might seem easy, but not in situations characterized by high demand volatility and high product mixes in manufacturing portfolios. We have to make the Rhythm Wheel approach more flexible, to "breathe" in sync with cycle times, but in a well-structured, disciplined way, within the defined variability control parameters. The key is to "funnel" variability with the Rhythm Wheel cycle time boundaries along the supply chain and in this way actively counteracting the infamous bullwhip effect and achieve a step change in supply chain performance.

With traditional supply chain concepts, the line between planning parameterization (configuration) and the planning run (execution) is blurred. In contrast to this classical planning approach, in LEAN SCM Planning, we have sliced the given planning complexity precisely. We slice the planning task horizontally into global tactical *pre-parameterization* (conditioning) and local planning run areas. Having done so, we have devised a *new LEAN SCM Planning Framework* to better cope with global synchronization needs.

While working with industry pioneers on this new supply chain planning approach, we were confronted almost immediately with additional questions when we stepped into the first implementations:

- How should the organizational model be adapted to the significant change in supply chain planning?
- What are the new roles and responsibilities required in the global supply chain community?

K21445_C000f.indd 22 04-11-2013 10:49:56


- Which factors should be aligned in corporate performance management to the new planning principles?
- What system gaps can be closed without discarding prior IT (information technology) investments?
- How can this new planning paradigm be implemented to achieve a step change in performance?

To answer these questions, we have consolidated all our conceptual research results and organizational project experience in this book, developed new IT add-on solutions to complement the existing SCM systems for implementation, and given a name to the holistic transformation approach—*LEAN SCM*. This new planning paradigm answers the VUCA challenges in process industries and overcomes the insufficiencies of traditional planning approaches. To highlight the distinction between lean (in small letters)—with its focus on manufacturing objectives—and LEAN—with its focus on end-to-end supply chain synchronization—we coined the all-capitalized term "LEAN" (see Figure 0.2).

Our implementation experience shows that there are three major obstacles to managing a *LEAN SCM transformation* program. First, a company's executive leadership must understand that this is not a single-project initiative, but rather a journey—in other words, sticking to LEAN SCM once the journey has started is crucial for success. Introducing the new paradigm of integrated supply chain planning and variability management requires a *new SCM operating model* with clear end-to-end accountabilities. This will make end-to-end integration possible between, for example, global inventory and local asset management. It is a new way of coordinating and synchronizing operations and throughput in a multi-step value chain. Top management support, training (and incentives) for all stakeholders, and strong commitment to the paradigm change are the preconditions for successful transformation. But bear in mind that you are aiming for nothing less than a step change in supply chain performance.

Second, aligned *performance management* is a critical success factor in the LEAN SCM transformation. The new conceptual elements and the new planning processes require new process performance indicators, such as Rhythm Wheel cycle time attainment and cycle time variation, to be monitored carefully. Therefore, an effectively adapted and well-designed performance management system is fundamental. But this typically does not imply the need to reinvent current performance management systems.

K21445_C000f.indd 23 04-11-2013 10:49:56

CT = cycle time, IRL = inventory replenishment level, ERP = enterprise resource planning, APS = advanced planning systems.

FIGURE 0.2 What lean SCM and LEAN SCM are about.

K21445_C000f.indd 24 04-11-2013 10:49:57

We will provide a set of meaningful metrics on the basis of which to generate improved supply chain performance through LEAN SCM. Finally, we depict a pragmatic way of creating the right accountabilities within performance management and show you how to anchor it in your planning organization.

Third, technology is instrumental in helping LEAN SCM create sustainable results. Many lean improvement initiatives depend on few individuals and manual techniques—and if those individuals change positions, much of the planning knowledge, enthusiasm, and leadership are lost. In this light, IT applications are even more critical to capture and standardize processes sustainably in a global end-to-end transformation. These additional *IT technologies* are also supposed to institutionalize LEAN SCM Planning. Applications such as the "Rhythm Wheel Designer" or the "Dynamic Target Stock Planner" provide interlocks with concepts such as cyclic planning and balanced variability management in supply chain organizations, ensuring that common LEAN SCM Planning techniques and best practices have staying power in your SCM organization.

You are holding the results of our LEAN SCM work in your hands right now: it is a holistic practitioner's guide to mastering variability, uncertainty, complexity, and ambiguity in process industry supply chains. It also includes detailed concept descriptions and process explanations. To make it even more practical and valuable for your own reflection, we have enriched all topics with relevant industry cases. We believe that the performance improvements achieved through LEAN SCM initiatives are best described by your industry pioneers themselves. You can therefore also find in this book accounts of how your peers have already lived the LEAN SCM paradigm, used the relevant instruments successfully, and gained:

- Improved customer service and increased supply chain agility through reduced cycle times for Rhythm Wheel-managed products.
- Significant improvements in overall equipment effectiveness (OEE) through leveled and takted material flows that are synchronized to customer demand.
- Significant reductions in working capital through actionable supply chain analytics on variability and risk allocation of stocks across the end-to-end supply network.

K21445_C000f.indd 25 04-11-2013 10:49:57

xxvi • Introduction: What the Book Is All About

I am certain you will enjoy the same outstanding results along your company's supply chain by reading this book and adopting LEAN SCM—because now you are targeting nothing less than a quantum leap in your operations and supply chain performance.

Dr. Josef Packowski *Mannheim, Germany*

K21445_C000f.indd 26 04-11-2013 10:49:57