

Impressum

Herausgeber

Linde Gas Deutschland

Postanschrift

Linde AG Gases Division, Linde Gas Deutschland Seitnerstraße 70, 82049 Pullach Telefon 01803.85000-0* Telefax 01803.85000-1* www.linde-gas.de

Layout und Herstellung

Löhr & Partner GmbH, München

Druck

Druckerei & Verlag Steinmeier GmbH & Co. KG, Deiningen

Bildnachweise

Linde AG, gettyimages, © Trumpf Laser (Seite 22)

HiQ[®] ist die Dachmarke für das Spezialgase-Programm von Linde Gas. Das Siegel HiQ[®] steht für Leistung und Qualität im Bereich Spezialgase. Unter HiQ[®] fallen Gase hoher Reinheit, Gasgemische und Prüfgase, Armaturen, Gasversorgungssysteme und Services.

Verwendung von Bildmaterial, Nachdruck – auch nur auszugsweise – nur mit Genehmigung der Linde AG. Lieferprogramm online unter www.linde-gas.de/produkte

© Copyright Linde AG, August 2014 Änderungen vorbehalten.

ACCURA®, BASELINE®, CONOXIA®, ECOCYL®, HiQ®, ISOKRYPT®, LAPAROX®, LASERMIX®, LIPROTECT®, LIVOPAN®, NIONTIX®, PLASTIGAS®, REDLINE®, SECCURA® und VERISEQ® sind eingetragene Marken der Linde AG. Linde Gas DIREKT™ ist eine Marke der Linde AG. Hastelloy® ist eine eingetragene Marke von Haynes International Inc. Reingase und hochwertige Gasgemische mit dazu passenden Entnahmeeinrichtungen wie Druckminderern sind heute in nahezu allen Branchen für das erfolgreiche Tagesgeschäft von Bedeutung. In vielen Fällen ermöglichen individuell auf den jeweiligen Bedarf ausgelegte Gasversorgungssysteme von Linde einen wirtschaftlicheren und zuverlässigeren Betrieb.

Im vorliegenden Katalog finden Sie die breite Palette unseres Lieferprogramms. Ergänzend zu unseren Produkten stellen wir Ihnen Linde Gas SERVICES vor, die Sie im Alltag entlasten und durch Versorgungs- und Betriebssicherheit weiteres Optimierungspotenzial eröffnen. Bei Fragen zu bestimmten Teilbereichen können Sie gerne zusätzliche Detailunterlagen anfordern.

Inhaltsverzeichnis.

- 6 Einführung
- 8 Qualität, Sicherheit & Umweltschutz
- 10 Branchen & Anwendungen von Spezialgasen
- 12 Analytik
- 14 Arbeitsschutz
- 16 Automobilindustrie
- 18 Chemie & Petrochemie
- 20 Elektronikindustrie
- 22 Energietechnik
- 24 Glasindustrie
- 26 Kältetechnik
- 28 Lasertechnik30 Lichttechnik
- 32 Medizintechnik
- 34 Metallurgie
- 36 Pharmazeutische Industrie
- 38 Umweltschutz
- 40 Universitäten & Forschungsinstitute

42 Reingase & Gasgemische

- 46 Reingase
- 118 Gasgemische & Prüfgase
- 156 Gasgemische für spezielle Anwendungen

05

170 Γ)rucka	ashehä	ilter für	Spezial	laase

- 172 Kennzeichnung von Druckgasbehältern
- 178 Umgang mit Druckgasbehältern
- 182 Standard-Druckgasbehälter
- 186 Kleinbehälter
- 192 Fässer

194 Unsere Services

- 196 Administration und Controlling
- 198 Anwendungen
- 200 Versorgung
- 202 Qualität und Sicherheit

204 Tabellen & Diagramme

- 205 Dampfdruckkurven einiger anorganischer Gase
- 206 Dampfdruckkurven einiger Kohlenwasserstoffe
- 207 Dampfdruckkurven einiger Kohlenwasserstoff-Derivate
- 208 Physikalische Daten

214 Index

220 Liefer-, Nutzungs- und Geschäftsbedingungen

Einführung. Spezialgase sind überall im Einsatz.

Satelliten im Weltall, eine leuchtende Glühlampe oder die gewöhnlichen Isolierglasscheiben – nicht jeder denkt in diesem Zusammenhang an Spezialgase. Und trotzdem sind sie überall auf der Welt im Einsatz, rund um die Uhr. Sie sind dabei, wenn gemessen, geprüft, synthetisiert oder analysiert wird. Spezialgase von Linde werden zur Verbesserung der Lebensqualität eingesetzt und sind wichtige Helfer in nahezu allen Industriebereichen.

Dieser Katalog

Im vorliegenden Katalog bilden wir die breite Palette unseres Lieferprogramms ab. Von Reingasen über Standardgemische bis hin zu hochpräzisen Prüfgasen. Ergänzend zu unseren Produkten stellen wir Ihnen eine Reihe von Services vor, die Ihnen Bestellung, Verwendung und Umgang mit unseren Gasen erleichtern können.

Armaturen für Spezialgase finden Sie in einem separaten Katalog. Auch Industriegase und deren Gemische werden im vorliegenden Katalog nicht im Detail behandelt. Für diese Gase steht gesondertes Informationsmaterial zur Verfügung.

Unternehmensprofil

Die Linde Group ist ein weltweit führender Anbieter für Industrie-, Prozess- und Spezialgase in mehr als 100 Ländern. Ein Erfolg, der mit der Verflüssigung von Luft begonnen hat. Als einziger Gasanbieter ist Linde zugleich führendes Unternehmen des Anlagenbaus auf dem Weltmarkt. Wegen der Synergie dieser beiden Geschäftsbereiche bietet Ihnen Linde nicht nur ausgezeichnetes Fachwissen und jahrzehntelange Erfahrung in Produktion, Handel und Distribution von Gasen, sondern auch ein ausgeprägtes Verständnis für technische Problemlösungen und Prozessoptimierung. Aufgrund unserer Vertriebsstrukturen und unserem Know-how sind wir der Geschäftspartner an Ihrer Seite, auf den Sie sich verlassen können.

Qualität, Sicherheit & Umweltschutz. Hohe Ansprüche sind bei uns Standard.

Wir arbeiten kontinuierlich daran, dass Sie von uns stets die Bestleistung erhalten. Damit können Sie wettbewerbsfähig, zuverlässig und sicher arbeiten.

Wir haben das Ziel, die Qualität unserer Produkte und Dienstleistungen ständig zu verbessern und gleichzeitig einen hohen Standard bei Sicherheit, Gesundheits- und Umweltschutz zu erreichen. Um dies zu erfüllen, haben wir ein integriertes Managementsystem nach ISO 9001, ISO 14001, SCC* und ISO 22000 eingeführt, welches dafür sorgt, dass Qualität, Sicherheit, Gesundheits- und Umweltschutz gleichermaßen in all unseren Geschäftsfeldern gewährleistet sind. SCC ist ein kombiniertes Arbeits- und Umweltschutzmanagementsystem für die Petrochemie.

Im Fokus dieses Konzepts stehen Sie – unsere Kunden – sowie unsere Mitarbeiter, die Umwelt und die Allgemeinheit. Durch Aufklärung über mögliche Gefahren, die im Umgang mit unseren Produkten entstehen können, wollen wir Sie präventiv vor Unfällen schützen. Die korrekte Handhabung unserer Produkte sorgt nicht nur für Ihre Sicherheit, sondern auch für die Ihrer Mitarbeiter sowie Ihres Betriebs und dient dem Umweltschutz.

Qualitätsgarantie

Linde Gas liefert Produkte höchster Reinheit, die für die Erzielung optimaler Ergebnisse Voraussetzung sind. Die Marke HiQ® von Linde steht für hochreine Gase, maßgeschneiderte Gasgemische und individuelle Gasversorgungssysteme. Von der Vorbehandlung der Druckgasbehälter bis hin zum Service bei Ihnen vor Ort steht bei uns die Qualität im Mittelpunkt. Das Endprodukt soll zu Ihrer besten Zufriedenheit ausfallen. Unser Ziel ist es, Ihre Anforderungen zu erkennen und sie exakt zu erfüllen.

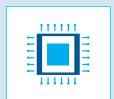
Sicherheit

In unserem Kundenportal haben Sie rund um die Uhr Zugriff auf Sicherheitsdatenblätter und detaillierte Sicherheitshinweise, die Sie über die richtige Verwendung unserer Produkte informieren. Ausführlicher können Sie und Ihre Mitarbeiter zu diesem Thema in einem LIPROTECT®-Sicherheitsseminar geschult werden.

Umweltschutz

Die Anforderungen des Umweltschutzes haben in den vergangenen Jahren stetig zugenommen. Linde hält alle bestehenden Normen ein oder übertrifft diese. Darüber hinaus steht nachhaltiges Wirtschaften für uns im Mittelpunkt. In einem kontinuierlichen Verbesserungsprozess bemühen wir uns, unsere Umweltpolitik stetig zu optimieren.

Analytik


Arbeitsschutz

Automobilindustrie

Chemie & Petrochemie

Elektronikindustrie

Energietechnik

Glasindustrie

Kältetechnik

Lasertechnik

Lichttechnik

Medizintechnik

Metallurgie

Pharmazeutische Industrie

Umweltschutz

Universitäten & Forschungsinstitute

Branchen & Anwendungen von Spezialgasen. Für alle Fälle das passende Gas.

Ob für das Vorantreiben von Innovationen, zur Durchführung präziser Analysen oder zur Einführung einer wirtschaftlicheren Produktionsweise – Linde Gas bietet Ihnen stets die notwendige Produktvielfalt an Reingasen, Standardgasgemischen und Prüfgasen.

Aufgrund des Fachwissens und der langjährigen Erfahrung unserer Spezialisten können wir für eine Vielzahl von Branchen kompetente Beratung, maßgeschneiderte Produkte und individuell abgestimmte Services bieten.

Im Folgenden finden Sie Kurzprofile einiger Branchen, in denen Spezialgase zum Einsatz kommen, und erfahren, welche Dienste unsere Produkte als unsichtbare Helfer leisten.

- → Analytik
- → Arbeitsschutz
- → Automobilindustrie
- → Chemie & Petrochemie
- → Elektronikindustrie
- → Energietechnik
- → Glasindustrie
- → Kältetechnik→ Lacostochnik
- → Lasertechnik
- → Lichttechnik→ Medizintechnik
- → Metallurgie
- → Pharmazeutische Industrie
- → Umweltschutz
- → Universitäten & Forschungsinstitute
- → und viele mehr

Analytik. Genauigkeit entscheidet. Hochreine Gase für messbaren Erfolg.

Um Messergebnisse vergleichen zu können, sind eine Vielzahl von internationalen Richtlinien und Normen dementsprechend ausgelegt, z.B. DIN EN ISO/IEC 17025. Daraus folgt für Laboratorien und Industrie, dass sie nicht nur qualitativ hochwertige Betriebsgase in ihren Analysengeräten einsetzen müssen, sondern auch Gasgemische, welche metrologisch rückführbar sind.

Rückführbarkeit bedeutet die nachvollziehbare Kontrolle von Messergebnissen durch Kalibrierung mit Messmitteln bekannter Genauigkeit, die an anerkannte Messnormale angeschlossen sind. In der physikalischen Messtechnik sind diese Normale die international anerkannten Verkörperungen der entsprechenden SI-Einheiten.

Linde bietet Prüfgase über alle Qualitätshierachien an:

- → Referenzmaterialien gemäß ISO Guide 34
- → Prüfgase mit DAkkS-Kalibrierschein
- → PEH-Gemische (Prüfgase mit enger Herstelltoleranz)
- → Prüfgase für spezielle Anwendungen

Ebenso stehen qualitativ hochwertige Betriebsgase (bis Qualität 7.0) für eine anspruchsvolle Analytik zur Verfügung.

Arbeitsschutz. Sicher ist sicher. Sattelfest in der Praxis.

Eine sichere und gesunde Arbeitsumgebung für Arbeitnehmer stellt heute eine Selbstverständlichkeit dar. Schon das Austreten von geringen Mengen an gefährlichen Gasen und Dämpfen durch kleine Lecks kann weitreichende Folgen für Gesundheit und Umwelt haben. Eine gängige Vorgehensweise ist die Installation von Gasdetektoren, um die Konzentration solch schädlicher Substanzen zu überwachen.

Der Umgang mit brennbaren Gasen, Stäuben und Dämpfen ist häufig mit Explosionsgefahren verbunden. Voraussetzung für das Entstehen einer explosionsfähigen Atmosphäre ist das gleichzeitige Zusammentreffen eines brennbaren Stoffes mit ausreichend Sauerstoff und einer Zündquelle. Zur effizienten Messung und Beurteilung von Gasen oder Dämpfen werden daher spezielle Ex-Messgeräte sowohl personenbezogen als auch zur Bereichsüberwachung eingesetzt.

Arbeitnehmer müssen sich auf Überwachungsgeräte als höchstmögliche Schutzmaßnahme verlassen können. Die regelmäßige Überprüfung der Messgeräte und Gasdetektoren mit geeigneten Prüfgasen ist darum ebenso entscheidend für einen sicheren Schutz wie eine ausreichende Verteilung von Gasdetektoren und Ex-Messgeräten in der Betriebsstätte.

Automobilindustrie. Qualität erfahren. Produktion perfektionieren.

In der mobilen Gesellschaft stellen Autoabgase und Smog für Menschen in den meisten Teilen der Erde ein Problem dar. Um Risiken für Gesundheit und Umwelt zu verringern, wurden die Emissionsgrenzwerte für Fahrzeuge in den letzten Jahrzehnten schrittweise herabgesetzt.

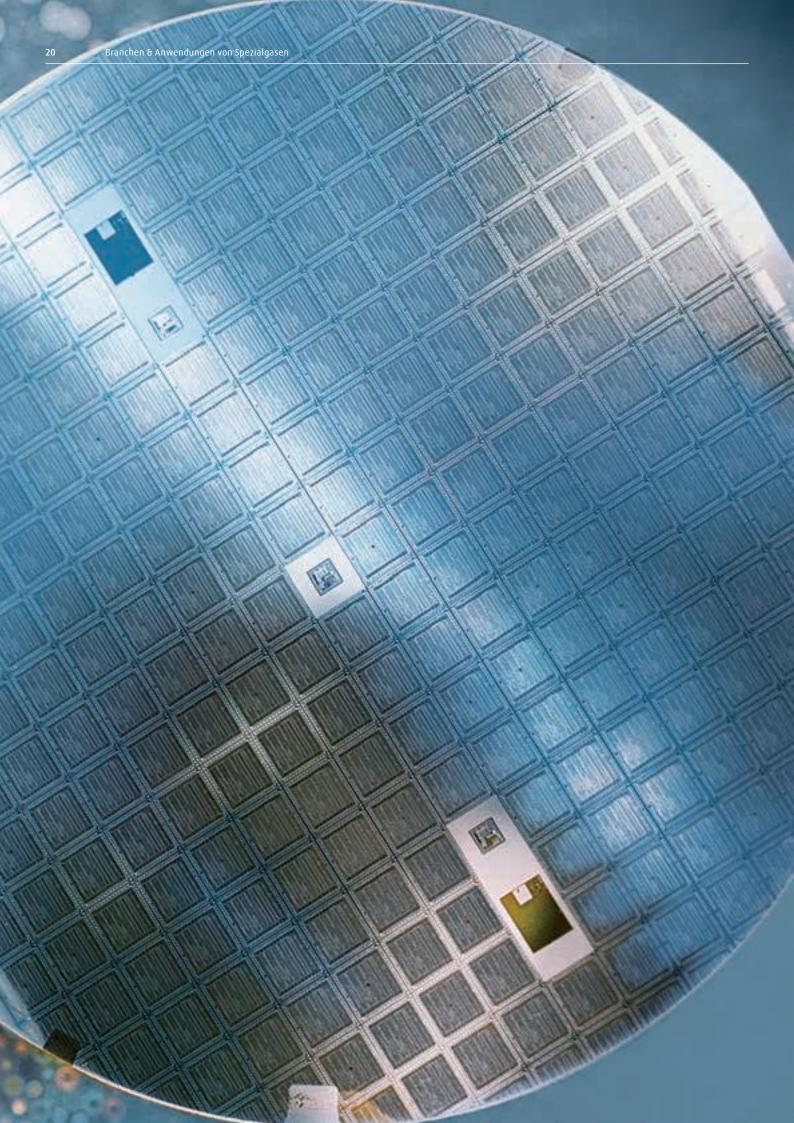
Für die Bewältigung der daraus entstehenden Herausforderungen erfüllen Spezialgase wichtige Funktionen. Sie sind Begleiter der Automobilindustrie bei Innovationen in der Fertigungstechnik und bei der Entwicklung neuer Motorenkonzepte.

Fahrzeugmotoren werden in vielen Phasen ihres Lebenszyklus überprüft. In der Entwicklung werden sie auf minimale Emission und maximalen Energieumsatz hin optimiert. Die Typenabnahme beinhaltet umfangreiche Tests nach internationalen Richtlinien. Während der Serienproduktion finden Messungen statt, um zu erkennen, ob jede Einheit mit den Spezifikationen übereinstimmt. Schließlich folgt mit der Nutzungsphase die regelmäßige Inspektion durch Kfz-Prüfstellen, wobei unter anderem die Abgase untersucht werden.

Fahrzeug- und Motortests werden mit verschiedenen Analysentechniken durchgeführt. Die Messungen müssen mit Genauigkeit unter verlässlichen, reproduzierbaren Bedingungen erfolgen, weshalb die Geräte auf eine zuverlässige Weise kalibriert werden müssen. Ein wichtiger Aspekt ist daher neben der eigentlichen Messprozedur das Kalibriergasgemisch selbst. Das Produktprogramm von Linde Gas bietet neben amtlich zertifizierten Eichgasgemischen selbstverständlich auch individuell herstellbare Prüfgase, welche jeden Kalibrierbedarf abdecken. Darüber hinaus bieten wir auch Kalibriergase mit Rückführbarkeit zu internationalen Standards an.

Auch bei der Herstellung anderer Fahrzeugkomponenten spielen Spezialgase oft eine wichtige Rolle. Von der Stahlherstellung über die Materialbearbeitung mit Kohlendioxidlasern bis hin zur Produktion von Crash-Sensoren sind hochreine Gase oder spezielle Gasgemische im Einsatz.

Chemie & Petrochemie. Unsichtbare Helfer. Lösungen vom Labor bis zum Chemiepark.


Spezialgase sind entscheidende Helfer in Chemie und Petrochemie. Die Anwendungsmöglichkeiten reichen von der Synthesechemie über eine effiziente Prozesskontrolle bis hin zur Absicherung von Wirtschaftlichkeit und Produktqualität.

Haben früher Chemieunternehmen möglichst noch alles in Eigenregie durchgeführt, so setzt sich seit einigen Jahren mehr und mehr das Geschäftsmodell der Chemieparks durch. Die angesiedelten Firmen nutzen gemeinsame Strukturen. Dazu gehören Energieversorgung, Entsorgung, Logistik, Analytik, Sicherheit, Umweltschutz sowie IT- und Personaldienstleistung. Diese werden durch die Chemieparkbetreiber in den unterschiedlichsten Ausprägungen angeboten. Ein weiterer Vorteil sind die Stoffverbünde. Abfallprodukte einer Produktionsanlage dienen als Rohstoff für die Produktion in einer anderen Anlage vor Ort. Das spart Entsorgungs-, Logistik- und Rohstoffkosten.

Unsere Gase werden in einem sehr vielfältigen Anwendungsspektrum eingesetzt. Mit Inertgasen können beispielsweise Silobrände unter Kontrolle gebracht werden. Unter der Bezeichnung Trockeneispellets bekannte Körner aus festem Kohlendioxid bieten eine umweltfreundliche Option für die effiziente Reinigung der verschiedensten Maschinen, Geräte und Bauwerke. Im Bereich Kühlen und Frosten geht der Trend hin zu umweltschonenden Lösungen. Mit unserem flüssigen Stickstoff als Kältemedium haben wir hier eine Vorreiterrolle übernommen.

Durch variable Spezialgase-Lösungen und ein komplettes Produktprogramm können wir Sie beim Upscaling vom Labormaßstab bis zur industriellen Produktion unterstützen.

Aber auch abseits der Produktionsprozesse nehmen Prüfgase und Gasgemische eine wichtige Rolle ein. Ob bei der Überwachung von Rauchgas-Reinigungsanlagen oder für den Arbeitsschutz – zur Grenzwertbestimmung stehen in unserem Produktprogramm zahlreiche standardisierte Prüfgase in unterschiedlichen Konzentrationen zur Verfügung.

Elektronikindustrie. Kleine Teilchen, große Wirkung. Qualität bis ins Detail.

Der Chip ist im 21. Jahrhundert ein fester Bestandteil unseres Alltags geworden. Halbleiterbauteile unterstützen z.B. Fahrzeugführer in schwierigen Verkehrssituationen, ermöglichen die drahtlose Telekommunikation oder bereiten uns audiovisuelles Vergnügen.

Die Halbleiterproduktion ist einer der Bereiche mit hohem Wachstumspotenzial und relativ kurzen Innovationszyklen. Aufgrund der dramatisch ansteigenden Integrationsdichte und der immer kleiner werdenden Strukturbreite integrierter Schaltungen ergeben sich bei deren Herstellung besondere Anforderungen an die Reinheit der verwendeten Materialien. Mit ständiger Produktentwicklung trägt Linde Gas diesen steigenden Anforderungen Rechnung und ist in der Lage, auch höchsten Ansprüchen gerecht zu werden.

Außer in der Mikroelektronik werden Elektronikgase auch in anderen Bereichen der Hochtechnologie eingesetzt, wie beispielsweise in der Lichtwellenleiter- und LED-Produktion, bei der Oberflächenbeschichtung von Werkstoffen oder in der Sensor- und Solarzellenherstellung.

Durch die Lieferung von Spezialgasen höchster Reinheit und spezifischer Zusammensetzung bis zum Point-of-Use unterstützen wir Sie bei der Optimierung Ihrer Prozesse und dem Erhalt Ihrer Wettbewerbsfähigkeit.

Weitere Informationen zu Gasen und Gasgemischen für die Elektronikindustrie finden Sie unter www.linde-electronics.eu.

Energietechnik. Vergleichbare Qualität. Normgerechte Präzision.

Energieversorgungsunternehmen und Raffinerien sowie andere energieintensive Betriebe beziehen ihre Rohstoffe aus verschiedenen Quellen. Die Zusammensetzung des angelieferten Erdgases kann daher bei den Energieversorgungsunternehmen deutliche Unterschiede aufweisen. Neben der Hauptkomponente Methan sind weitere Kohlenwasserstoffe, Stickstoff und Kohlendioxid in abweichenden Konzentrationen enthalten, welche den Energieinhalt fossiler Brennstoffe reduzieren.

In der Energiewirtschaft ist es daher von zentraler Bedeutung, die genaue Zusammensetzung der Rohstoffe zu kennen. Zur Verbrauchsermittlung und um Brennwert und Dichte des angelieferten Erdgases zu überprüfen, werden Gaskalorimeter, Prozessgaschromatographen und Normdichteaufnehmer verwendet.

Zur Kalibrierung dieser Messgeräte werden Kalibriergasgemische und Reingase benötigt, deren Zusammensetzung, Reinheit und Herstellgenauigkeit von der Physikalisch-Technischen Bundesanstalt (PTB) als oberste Eichbehörde vorgeschrieben werden. Alle in unserem Produktprogramm zur Verfügung stehenden Reingase und Kalibriergasgemische für die Energietechnik können mit einem Zertifikat von staatlich anerkannten Prüfstellen für Gasmessgeräte geliefert werden.

Ebenfalls müssen alle Gasgeräte mit atmosphärischen Brennern kalibriert werden. Dafür werden Reingase und Kalibriergasgemische entsprechend nationaler und internationaler Normen mit definierter Reinheit und Zusammensetzung eingesetzt.

Bei der Erzeugung regenerativer Gase (z.B. Biogas) werden zur Prozesssteuerung und Qualitätssicherung Prüfgas-/Kalibriergasgemische benötigt. Beispielsweise werden in einer Biogasanlage zur Überwachung des Fermentationsprozesses und der Entschwefelung Gasgemische mit folgenden Komponenten benötigt: Methan, Kohlendioxid, Schwefelwasserstoff, Sauerstoff, Wasserstoff, Ammoniak und weitere.

Glasindustrie. G(l)asklar. Amorphe Substanz vielseitig verwendet.

Glas ist eines der vielseitigsten Materialien, das in vielen Bereichen zum Einsatz kommt. Eine wichtige Rolle spielt Glas im Alltag, im Fahrzeugbau, in der modernen Architektur, aber auch in Forschung und Wissenschaft. Die Glasindustrie umfasst die Bereiche Behälterglas, Flachglas (Float- und gewalztes Glas), Glasfaserherstellung, Art & Tableware, Spezialglas sowie Glasbearbeitung und -veredelung.

Glas ist ein sehr alter Werkstoff, der bereits seit vielen tausend Jahren von Menschenhand produziert wird. Der Werkstoff wurde im Laufe der Jahre zu einem hochfunktionalen Produkt weiterentwickelt. Dabei spielen Gase, als unsichtbare Helfer, eine wichtige Rolle. Zum Beispiel Wasserstoff, Erdgas und Sauerstoff in Oxyfuelbrennern beim Schmelzprozess, Wasserstoff und Sauerstoff bei der Feuerpolitur von Glasartikeln, Helium als Schutz- und funktionelles Gas bei der Glasbeschichtung und Schwefeldioxid beim Glasziehen, welches einen Schutzfilm bildet ("Hüttenrauch"), der feinsten Verkratzungen vorbeugt.

Glas hilft uns aber auch, Energie zu sparen und unsere Ressourcen zu schonen. Glas ist ein einzigartiger Werkstoff, der bis zu 100 % recycelt und wiederverwendet werden kann. Moderne Wärmedämmgläser (2-fach- und 3-fach-Isolierglas) sind ein Beispiel dafür. Diese werden mit einem wärmedämmenden Gas gefüllt, vorzugsweise mit den Edelgasen Argon und Krypton.

Kältetechnik. Know-how für kühle Köpfe. Kälte auf Abruf.

Seit vielen Generationen ist bereits bekannt, dass Kühlung für die Lagerung verderblicher Lebensmittel wichtig ist. Im Winter gewonnenes Eis stellte für eine lange Zeit die einzige Möglichkeit zur Kühlung dar. Heutige Kältemittel sind die Grundlage für viele kälte- und klimatechnische Anwendungen, die im täglichen Leben für Annehmlichkeiten sorgen und bei welchen speziell das Abführen von Wärme erforderlich ist. Zum Einsatz kommen sie beispielsweise in Kühl- und Gefrierschränken, in der Fahrzeugklimaanlage oder auch bei Wärmepumpen. Diese Anwendungen stellen hohe Anforderungen an die physikalischen Eigenschaften der dafür verwendeten, unter Druck verflüssigten Gase und setzen eine besondere Reinheit voraus. Unser Angebot umfasst Gase und Gasgemische für Kälteanwendungen.

Weitere Informationen zu Gasen und Gasgemischen für Kälteanwendungen finden Sie auf den Internetseiten der Linde-Konzerngesellschaft TEGA-Technische Gase und Gasetechnik unter www.tega.de/kaeltemittel.

Lasertechnik. Präzision in Lichtgeschwindigkeit. Gasgemische für exakte Ergebnisse.

Die Anwendungsmöglichkeiten von Licht als Werkzeug erscheinen nahezu unbegrenzt. Sie reichen vom einfachen Laserpointer über Entfernungsmessgeräte, Schneid- und Schweißwerkzeug bis hin zu medizinischen Anwendungen wie dem Laserskalpell oder Lasik.

Eine wichtige Gruppe unter den Lasern sind die Gaslaser, deren Resonator mit einem Gas bzw. Gasgemisch gefüllt ist. Der erste Gaslaser, ein Helium-Neon-Laser, wurde 1960 entwickelt. Von großer wirtschaftlicher Bedeutung sind die Kohlendioxid- und die Excimerlaser.

Die Kohlendioxidlaser mit einer Wellenlänge im fernen Infrarot sind sehr leistungsstark und werden deshalb in der industriellen Materialbearbeitung eingesetzt. Als Lasermedium wird ein Gasgemisch mit den Hauptkomponenten Kohlendioxid, Stickstoff und Helium verwendet. Unter dem Markennamen LASERMIX® vertreibt Linde seine Gasgemische für Kohlendioxidlaser.

Die Wellenlänge eines Excimerlasers liegt im UV-Bereich zwischen 157 und 351 Nanometer. Sie ist abhängig vom verwendeten Edelgas (Argon, Krypton, Xenon) und der Halogenkomponente (Fluor oder Chlorwasserstoff). Wichtigste Anwendungsfelder sind die Lithographie und die Augenheilkunde (Lasik).

Hochreine Gase und eine exakte Gemischfertigung mit strenger analytischer Kontrolle stellen sicher, dass die Leistungsparameter der Laser erreicht werden.

Lichttechnik. Es werde Licht. Innovative Beleuchtung.

Der Mensch nimmt seine Informationen aus der Umwelt überwiegend mit dem Auge auf. Damit zählt Licht zu einem elementaren Grundbedürfnis. Es fördert Wohlbefinden und gibt Sicherheit, unterstützt den Biorhythmus und sorgt für Komfort und Entspannung.

130 Jahre nachdem Edison die Glühlampe zur technischen Reife brachte, verschwindet diese nun vom Markt, da der Energieverbrauch zu hoch ist. Halogenlampen, Energiesparlampen und LED-Lampen treten bereits an ihre Stelle. Organische Leuchtdioden (OLEDs) werden folgen.

Um die in der Lampe auftretenden Wärmeverluste durch Wärmeleitung und Konvektion zu begrenzen, werden schwere gasförmige Inertgase eingesetzt. Argon in günstigeren, Krypton oder Xenon in hochwertigeren Glühlampen. Dabei spielt das für die Füllung der Glühbirne eingesetzte Gas eine entscheidende Rolle bei der Lebensdauer.

Halogenlampen werden mit Krypton oder Xenon und einem brom- bzw. jodhaltigen Kohlenwasserstoff gefüllt. Beim Xenonlicht im Automobil handelt es sich um eine Xenon-Gasentladungslampe. Durch Strom wird das Xenon zur Lichtemission angeregt.

Linde ist eines der sehr wenigen Unternehmen seiner Branche, welches die seltenen Edelgase, deren Anteil in der Luft bei Krypton 1 ppm und bei Xenon 0,08 ppm beträgt, gewinnt und als hochreine Gase anbieten kann.

Medizintechnik. Im Zeichen der Gesundheit. Kompromisslose Qualität.

Seit mehr als 100 Jahren werden Gase in der Medizin eingesetzt. Sie unterstützen die Atmung, helfen bei der Funktionsuntersuchung von Lunge und Blutsystem und sind unentbehrlich in der Chirurgie und Anästhesie. Die moderne Medizin ist ohne Gase für Diagnostik und Therapie nicht denkbar. Unsere medizinischen Gase sowie umfangreiches Equipment werden durch die Linde-Konzerngesellschaft Linde Gas Therapeutics vermarktet.

Zu den medizinischen Gasen in Arzneimittelqualität gehören CONOXIA® (Sauerstoff med.), LAPAROX® (Kohlendioxid med.), NIONTIX® (Lachgas med.) und LIVOPAN® (50 % Lachgas med. + 50 % Sauerstoff med. zur Schmerztherapie bei Kindern). Neben dem Einsatz dieser Gase für die medizinische Therapie am Menschen finden Spezialgase weitere Anwendungsgebiete in der Medizintechnik. So werden zum Beispiel Prüfund Kalibriergase für die medizinische Diagnostik in der Laboranalytik eingesetzt, Medizinprodukte wie Infusionsschläuche o. Ä. werden mit Ethylenoxid sterilisiert und Tomographen werden mit tiefkalt verflüssigtem Helium gekühlt.

Weitere Informationen zu medizinischen Gasen und Therapien finden Sie auf den Internetseiten von Linde Gas Therapeutics unter www.linde-healthcare.de.

Metallurgie. Verfahren optimieren. Die Atmosphäre entscheidet.

Die hohen Qualitätsanforderungen im Bereich der Metallurgie können oft nur durch spezielle Wärmebehandlungsprozesse erreicht werden. So werden z.B. bei vielen Glühprozessen durch die Wahl der Ofenatmosphäre aufwendige Nachbehandlungsarbeiten vermieden. Verfahren wie Gasaufkohlen, Nitrierhärten und Sintern werden durch den Einsatz von Gasgemischen erst möglich. Durch die Zusammensetzung des jeweiligen Gasgemisches im Ofen werden die Eigenschaften und damit z.B. die Verschleißfestigkeit der metallischen Oberflächen bestimmt.

Beim Gasaufkohlen kommen neben Stickstoff und Methanol auch Propan und Kohlenmonoxid zum Einsatz. Entkohlungsprozesse werden durch den Zusatz von Wasserstoff und/oder Kohlendioxid gesteuert. Das Nitrieren erfordert dagegen sehr spezielle Ofenatmosphären, die als aktives Gas Ammoniak enthalten.

Auch die entsprechende Analysentechnik begleitet die Herstellung und Verarbeitung von Stahl und anderen Metallen. Sie stellt eine hohe Produktqualität und eine störungsfreie Verarbeitung sicher. Stationäre Metallanalysatoren werden vor allem zur Prozesssteuerung bei der Metallerzeugung und zur Qualitätskontrolle bei der Metallverarbeitung eingesetzt.

Pharmazeutische Industrie. Rückverfolgbare Gase. Garantie für Qualität.

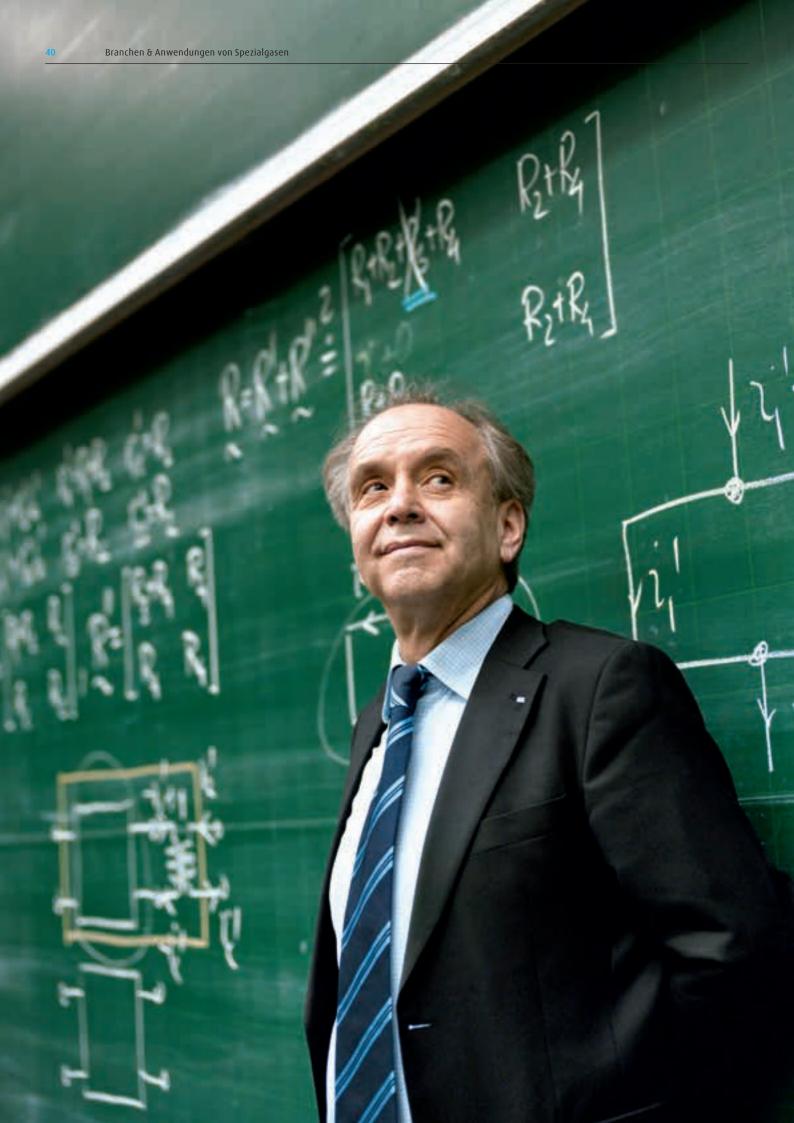
Rückverfolgbare Produkte von Linde erfüllen die Dokumentations- und Herstellungsbedürfnisse der Pharmaindustrie. Mit der Produktlinie VERISEQ® Pharmagase unterstützen wir Wirkstoff- und Arzneimittelhersteller bei der Umsetzung ihrer GMP-Vorgaben (Good Manufacturing Practice), deren Einhaltung von nationalen und/oder internationalen Arzneimittelbehörden wie der FDA (U.S. Food and Drug Administration) geprüft werden. Werden Gase in der Fertigung eingesetzt, müssen die Gleichmäßigkeit der Chargen und deren Rückverfolgbarkeit sichergestellt sein. Weiterhin sind diverse Anforderungen bezüglich Verifikation und Dokumentation von eingehenden Roh- und Hilfsstoffen sowie deren Übereinstimmung mit vereinbarten Spezifikationen einzuhalten. Unsere geprüften Gaselösungen – sie umfassen Gase, Hardware und Service – haben das Ziel, Arzneimittelhersteller zu unterstützen.

Unsere VERISEQ® Pharmagase werden unter besonderen Anforderungen an Chargenrückverfolgbarkeit in schriftlich festgelegten und dokumentierten Herstellungsprozessen erzeugt. Die Spezifikationen erfüllen die Monografien der europäischen und amerikanischen Pharmakopöen.

VERISEQ® Pharmagase werden immer mit Prüfzeugnis geliefert und müssen somit vor der Verwendung nicht zwingend nochmals analysiert werden. Qualifizierte Analysensysteme identifizieren die Gase, untersuchen sie auf Nebenbestandteile und stellen somit die Einhaltung der vereinbarten Spezifikationen sicher. Die im Zertifikat enthaltenen Informationen gewährleisten lückenlose Rückverfolgbarkeit.

Umweltschutz. Prozessüberwachung durch Prüfgase. Im Dienst der Umwelt.

Klimaerwärmung, Treibhauspotenzial und Ozonabbaupotenzial sind Begriffe, die heutzutage in aller Munde sind. Fast jeder kennt die damit verbundenen Diskussionen. Industrie, Straßenverkehr und Haushalte belasten unsere Luft mit Schadstoffen. Hohe Konzentrationen davon können Menschen, Tiere und Pflanzen nachhaltig auf lange Zeit hin schädigen.


Erkenntnisse über die Mechanismen der Ökosysteme werden immer weitreichender. Umweltrisiken durch schädliche, freigesetzte Substanzen können besser beurteilt und in geringsten Konzentrationen nachgewiesen werden.

Die Verbesserung der Luftqualität wird in den kommenden Jahren und Jahrzehnten einer der bestimmenden Faktoren der Stadtentwicklung sein. Zum Schutz vor schädlichen Umwelteinwirkungen durch Luftverunreinigungen ist die Überwachung von Immissionen und Emissionen unabdingbar.

Die deutschen Landesumweltämter betreiben in Deutschland ein Netz von stationären Messstationen sowie mobilen Messfahrzeugen zur Überwachung der Luftgüte. Mithilfe präziser Messgeräte werden unter anderem Konzentrationen der Luftschadstoffe Feinstaub, Ozon, Stickstoffoxide und Schwefeldioxid erfasst. Zur einwandfreien Funktion der Messgeräte ist eine regelmäßige Kalibrierung vorgeschrieben.

Prüfgase sind auch ein wesentliches Glied in der Messkette zur kontinuierlichen Überwachung von Emissionen und Immissionen in der Industrie. Gemäß Bundesimmissionsschutzgesetz müssen Betreiber genehmigungsbedürftiger Anlagen Art und Ausmaß der von ihren Anlagen ausgehenden Emissionen periodisch ermitteln lassen. Daher kommen in regelmäßigen Intervallen Prüfgase zur Kalibrierung der Analysengeräte zum Einsatz, um die Messgenauigkeit zu erhalten.

Innerhalb des Sortiments der HiQ® Spezialgase produziert Linde Prüfund Kalibriergase, die bezüglich Herstelltoleranz, Analysengenauigkeit und Reinheit der Ausgangsprodukte besonderen Anforderungen genügen. Als verlässlicher und innovativer Partner unterstützt Sie Linde mit Kalibriergasen, Betriebsgasen sowie Armaturen für den Betrieb der Analysensysteme, um Emissionen und Immissionen so exakt wie möglich bestimmen zu können.

Universitäten & Forschungsinstitute. Beste Ergebnisse. Forschung im Labor.

In der Forschungsarbeit sind Präzision, Reproduzierbarkeit und höchste Qualität für valide Ergebnisse essenziell. Die Auswahl der eingesetzten Gase wird folglich hinsichtlich dieser Gesichtspunkte getroffen. In Laboratorien sind kontinuierliche Prozess- und Qualitätskontrollen unverzichtbar. Neben Betriebsgasen finden hierbei vor allem Prüfgase zur Kalibrierung von Analysengeräten Anwendung. Darüber hinaus erfüllen Prüfgase wichtige Aufgaben bei experimentellen Untersuchungen, für welche Gasgemische exakt definierter Zusammensetzung benötigt werden.

Unsere hochwertigen Prüfgase werden besonders hohen Anforderungen bezüglich Herstelltoleranz, relativer Messunsicherheit und Reinheit der Ausgangsprodukte gerecht. Mit ihrer Hilfe lassen sich präzise Analysen durchführen, Innovationen vorantreiben oder Produktionsprozesse noch wirtschaftlicher gestalten. Neben Standardgemischen können Gemische genau nach Ihren Angaben gefertigt werden.

Da zu Forschungszwecken oftmals nur geringe Gasmengen, mobile Einsetzbarkeit und geringes Behältergewicht gefragt sind, bietet Ihnen Linde mit dem Programm "Gase in Kleinbehältern" eine umfassende Lösung, um Ihre Arbeitsabläufe nicht nur angenehmer, sondern auch sicherer zu gestalten.

Die zuverlässige Gasversorgung stellt jedoch nur einen Teilaspekt unserer Leistung dar. Daneben stellen wir Ihnen unser Know-how und unsere Erfahrung zur Verfügung, um das speziell für Sie geeignete Versorgungs- und Servicekonzept zu entwickeln.

Reingase & Gasgemische. Für jede Anwendung das passende Produkt.

Das vorliegende Lieferprogramm deckt nahezu alle Anwendungsgebiete ab – angefangen bei Produktion über Arbeits- und Umweltschutz bis hin zu Forschung und Entwicklung. Die Einsatzbereiche eines Gases werden durch die Branchenpiktogramme (siehe Übersicht auf Seite 10) aufgezeigt. Weitere Details zu den jeweiligen Branchen finden Sie im Kapitel "Branchen & Anwendungen von Spezialgasen". Sollten Sie ein von Ihnen benötigtes Gas nicht finden, wenden Sie sich gerne an uns.

Viele Gase und Gasgemische, die in diesem Katalog aufgeführt sind, sind Gefahrenstoffe gemäß § 4 Gefahrenstoffverordnung (GefStoffV). Sie sind z.B. brennbar, selbstentzündlich, brandfördernd (oxidierend), korrosiv oder giftig. In einigen Fällen können diese Produkte gleichzeitig mehrere der genannten Eigenschaften aufweisen. Inertgase sind im Sinne der Gefahrenstoffverordnung zwar keine Gefahrenstoffe, können jedoch durch Verdrängung des Luftsauerstoffs erstickend wirken.

Gase und ihre typischen Eigenschaften

Eigenschaft	Erklärung
Brennbar	Hat im Gemisch mit Luft oder anderen oxi-
	dierenden Stoffen einen Explosionsbereich.
Selbstentzündlich	Die Zündtemperatur liegt bei <100°C. Kann sich
	im Gemisch mit Luft oder Sauerstoff bereits bei
	Raumtemperatur entzünden.
Brandfördernd	Fördert die Verbrennung von Stoffen.
Korrosiv	Greift viele Materialien – insbesondere Metalle –
	stark an. Wirkt ätzend auf Haut und Schleimhäute.
Giftig	Bewirkt bei Einwirkung auf den Menschen über
	die Haut oder durch das Einatmen bereits in
	geringer Konzentration erhebliche Gesundheits-
	schäden oder den Tod.
Verflüssigt	Kann bei Raumtemperatur unter Druck verflüssigt
	werden.
Flüssig tiefkalt	Liegt bei künstlich niedrig gehaltener Temperatur
	in flüssigem Zustand vor.
Unter Druck gelöst	Ist bei Überdruck in Flüssigkeit gelöst.

* Bedeutung der Abkürzungen/Einheiten:

ppm = parts per million ppb = parts per billion ppt = parts per trillion ppq = parts per quadrillion

All unsere Gase sind von höchster Qualität und Reinheit, daher machen Nebenbestandteile unserer Produkte lediglich ein Millionstel (ppm) oder Milliardstel (ppb) aus.

Ferner gelten, sofern nicht anders angegeben, folgende Voraussetzungen:

Prozentangaben sind bei Reinheiten oder Nebenbestandteilen als Molprozente (ideale Volumenprozente) zu verstehen.

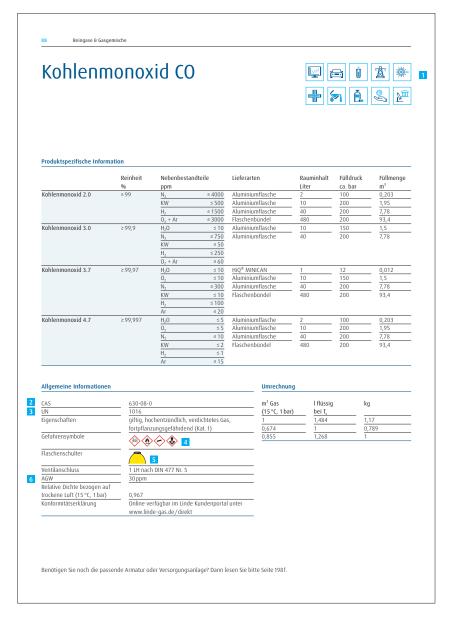
1 m³ ist die Gasmenge, die bei 15 °C und 1 bar einen Würfel von 1 m Kantenlänge ausfüllt. Ein Liter Gas entspricht einem Tausendstel der so definierten Gasmenge.

Druckangaben in bar sind, soweit nicht anders vermerkt, als absolute Drücke zu verstehen. Bei Gasen mit einer kritischen Temperatur $T_k \ge -10\,^{\circ}\text{C}$ erfolgt die Mengenangabe in kg.

Qualität von Anfang bis Ende

Bereits der erste Schritt des Produktionsprozesses, die Ventil- und Behälterauswahl, wird mit Augenmerk auf die Produktqualität ausgeführt. Üblicherweise werden Druckgasbehälter aus Stahl- oder Aluminiumlegierungen, in Ausnahmefällen auch aus Edelstahl, eingesetzt. Der Ventilwerkstoff wird nach Materialverträglichkeit entsprechend in Messing oder Edelstahl gewählt, dabei werden vorwiegend Membranventile verwendet. Anschließend wird die Innenoberfläche der Behälter je nach Anforderung mit unterschiedlichen Methoden bearbeitet. Unabhängig davon werden die Druckgasbehälter vor der Befüllung einem umfangreichen Spül-/Evakuierzyklus bei gleichzeitiger Erwärmung der Druckgasflaschen unterzogen. Dies führt zum Ergebnis, dass auch Spuren von Gasen, Dämpfen und speziell Feuchte bis unter die analytische Nachweisgrenze entfernt werden.

Vor der Auslieferung wird die Produktqualität mittels Gasanalyse geprüft. Bei Linde werden folgende Geräte und Verfahren zur Qualitätskontrolle eingesetzt:


- → Gaschromatographie mit einer Vielzahl von Detektorsystemen
- → Optische Methoden (FTIR, IR, UV-VIS)
- → Chemilumineszenzverfahren
- → Spezielle Sauerstoff- und Feuchtemesssysteme
- → Massenspektrometrie
- → Atomabsorptionsspektrometrie
- → Induktiv gekoppelte Plasmaspektrophotometrie (ICP)
- → Ionenchromatographie
- → Nasschemische Absolutverfahren
- → Elektrochemische Messverfahren
- → Partikelmessungen in Rohrleitungen

Für die Absicherung der Messergebnisse finden folgende Verfahren Anwendung:

- → Einsatz eigener Kalibrierstandards, die auf einer speziellen, hochempfindlichen, mechanischen Balkenwaage gefertigt werden
- → Verwendung national und international verfügbarer Standards
- → Durchführung nasschemischer Absolutverfahren nach DIN/VDI
- → Vergleichsmessungen bei internen und externen Ringanalysen

Reingase. Zuverlässige Qualität.

Zum leichteren Auffinden der Produkte sind im nachfolgenden Verzeichnis meist neben den IUPAC-Bezeichnungen (International Union of Pure and Applied Chemistry) auch die Trivialnamen angegeben. Alle Gase sind in den verfügbaren Reinheiten mit allen Lieferarten unter Angabe der wichtigsten gasspezifischen Daten und Eigenschaften aufgeführt. Weitere physikalische Kenndaten, Dampfdruckkurven und andere nützliche Informationen zu Reingasen sind im Kapitel "Tabellen & Diagramme" zusammengefasst.

- Branchenpiktogramm(e): Zeigen auf, in welchen Branchen das Produkt Anwendung findet. Die Zuordnung der Branchenpiktogramme ist im Kapitel "Branchen & Anwendungen für Spezialgase" dargestellt.
- CAS-Nummer (Chemical Abstracts Service): Hat internationale Gültigkeit und garantiert die weltweit eindeutige Bezeichnung.
- UN-Nummer und Gasbezeichnung gemäß ADR: Kennnummer für alle gefährlichen Stoffe und Güter (Gefahrengut), festgelegt von den Vereinten Nationen.
- Gefahrensymbole: Eine Auflistung aller Gefahrensymbole finden Sie im Kapitel "Kennzeichnung von Druckgasbehältern".
- Flaschenschulter: Eine Übersicht über die verschiedenen Flaschenschultern ist im Kapitel "Kennzeichnung von Druckgasbehältern" dargestellt.
- Arbeitsplatzgrenzwert (AGW): Gibt die zeitlich gewichtete, durchschnittliche Konzentration eines Stoffes in der Luft am Arbeitsplatz an, bei der eine akute oder chronische Schädigung der Gesundheit der Beschäftigten nicht zu erwarten ist. Bei der Festlegung wird von einer in der Regel achtstündigen Exposition an fünf Tagen in der Woche während der Lebensarbeitszeit ausgegangen.

Reinheit eines Gases

Die Reinheit eines Gases wird über zwei Angaben definiert:

- → Reinheitsaussage
- → Maximaler Anteil (Grenzwert) der Nebenbestandteile

Argon 6.0	≥ 99,9999 %	$H_2O \le 0.5 \text{ ppm}$
		$O_2 \le 0.5$ ppm
		$N_2 \le 0.5$ ppm
		CO ≤ 0,1 ppm
		KW ≤ 0,1 ppm
		$CO_2 \le 0.1 \text{ ppm}$

 $H_2 \le 0.5$ ppm

Beispiele:

99 ,5 %

Butan 2. 5 → Butan 2.5 bedeutet 99,5 % Butan

Reinheitsaussage

Die Reinheitsangabe erfolgt durch eine Kurzbezeichnung, die der verkürzten Angabe des Mindestgehaltes eines reinen Gases entspricht. Die erste Stelle der Bezeichnung gibt Aufschluss über die Anzahl der "Neunen" in der Prozentangabe für den Gehalt an reinem Gas. Die zweite Stelle determiniert die erste "von neun abweichende" Dezimalstelle. Die erste und die zweite Stelle werden durch einen Punkt getrennt.

Maximaler Anteil der Nebenbestandteile

Der maximale Anteil der Nebenbestandteile wird nach seiner Art (z.B. KW = Kohlenwasserstoffe) und seinem Anteil (z.B. \leq 0,5 ppm) spezifiziert. Wir garantieren die Einhaltung der Nebenbestandteile bis zum angegebenen Wert.

Konformitätserklärung

Zu jedem Reingas können Sie sich eine Konformitätserklärung nach ISO/IEC 17050-1:2004 aus unserem Kundenportal Linde Gas DIREKT™ herunterladen. Unter einer Konformitätserklärung versteht man die schriftliche Bestätigung am Ende einer Konformitätsbewertung. In dieser erklärt und bestätigt der Hersteller für ein Produkt verbindlich, dass dieses Produkt die auf der Erklärung spezifizierten Eigenschaften aufweist.

Acetylen C₂H₂

Produktspezifische Informationen

	Reinheit %	Nebenbestand ppm	teile	Lieferarten	Rauminhalt Liter	Fülldruck ca. bar	Füllmenge kg
Acetylen	≥ 99,5			Stahlflasche	10	19	1,6
				Stahlflasche	40	19	8
				Stahlflasche	50	19	10
				Flaschenbündel	240	19	43,2
				Flaschenbündel	800	19	144
				Flaschenbündel	864	19	160
Acetylen (in DMF gelöst)	≥ 99,5			Flaschenbündel	54	19	60
				Flaschenbündel	864	19	160
Acetylen lösungsmittelfrei	≥ 99,6	H ₂ 0	≤ 100	Stahlflasche	40	19	1
		N_2	≤ 4000				
		Wasserstoff-	≤ 10				
		verb. von					
		As, S, P					
Acetylen für Flammen-	≥ 99,6	H ₂ 0	≤ 100	Stahlflasche	10	19	1,6
photometrie		Wasserstoff-	≤ 5	Stahlflasche	20	19	3,2
		verb. von		Stahlflasche	40	19	8
		As, S, P					

Allgemeine Informationen

CAS	74-86-2
UN	1001, 3374 für Acetylen lösungsmittelfrei
Eigenschaften	hochentzündlich
Gefahrensymbole	⋄ ◇
Flaschenschulter	
Ventilanschluss	Anschluss für Spannbügel nach DIN 477 Nr. 3
	Bündel: kegelig mit O-Ring M 28 x 1,5 LH
AGW	
Relative Dichte bezogen auf	
trockene Luft (15°C, 1bar)	0,905
Konformitätserklärung	online verfügbar im Linde-Kundenportal unter
	www.linde-gas.de/direkt

m³ Gas	kg
(15°C, 1bar)	
1	1,1
0,909	1

Ammoniak NH₃

Produktspezifische Informationen

	Reinheit %	Nebenb ppm	estandteile	Lieferarten	Rauminhalt Liter	Dampfdruck bar (bei 20°C)	Füllmenge kg
Ammoniak 3.8	≥99,98	H ₂ 0	≤200 (w/w)	Stahlflasche	2	8,59	1
		Öl	≤10 (w/w)	Stahlflasche	10	8,59	5,3
				Stahlflasche	50	8,59	26,5
				Stahlflasche		8,59	41,8
				Stahlflasche	126	8,59	66
				Stahlfass	950	8,59	475
Ammoniak 4.5	≥ 99,995	H ₂ O	≤ 5	Stahlflasche	50	8,59	26,5
		$\overline{O_2}$	≤ 5				
		$\overline{N_2}$	≤ 30				
		CO	≤ 5				
		KW	≤ 2				
		CO ₂	≤ 1				
Ammoniak 5.0	≥ 99,999	H ₂ O	≤ 1	Stahlflasche	2	8,59	1
		02	≤ 1	Stahlflasche	10	8,59	5
		$\overline{N_2}$	≤ 4	Stahlflasche	50	8,59	26,5
		CO	≤ 1	Stahlfass	825	8,59	430
		KW	≤ 1				
		$\overline{CO_2}$	≤ 1				
Ammoniak 6.0	≥ 99,9999	H ₂ O	≤ 0,2	Stahlflasche	2	8,59	1
		$\overline{O_2}$	≤ 0, 1	Stahlflasche	10	8,59	5
		$\overline{N_2}$	≤ 0,5	Stahlflasche	50	8,59	26,5
		CO	≤ 0, 1				
		KW	≤ 0, 1				
		CO ₂	≤ 0,2				
		Fe	≤0,1 (w/w)				
Ammoniak 6.0 Opto	≥99,9999	H ₂ O	≤ 0,05	Stahlflasche	10	8,59	5
		$\overline{O_2}$	≤ 0,05	Stahlflasche	50	8,59	<u>5</u> 25
		$\overline{N_2}$	≤ 0,5				
		CO	≤ 0,05				
		KW	≤ 0,1				
		$\overline{CO_2}$	≤ 0,05				
		Fe	≤0,1 (w/w)				

Ammoniak NH₃

Allgemeine Informationen

CAS	7664-41-7
UN	1005
Eigenschaften	giftig, ätzend, umweltgefährlich, unter Druck verflüssigtes Gas
Gefahrensymbole	
Flaschenschulter	
Ventilanschluss	W 21,80 x 1/14 nach DIN 477 Nr. 6
AGW	20 ppm
Relative Dichte bezogen auf	
trockene Luft (15°C, 1bar)	0,596
Konformitätserklärung	online verfügbar im Linde-Kundenportal unter
	www.linde-gas.de/direkt

m³ Gas	l flüssig	kg	
(15°C, 1bar)	bei T _s		
1	1,058	0,722	
0,945	1	0,682	
1,386	1,466		

Argon Ar

Produktspezifische Informationen

	Reinheit	Nebenbestand	Iteile	Lieferarten	Rauminhalt	Fülldruck	Füllmenge
	0/0	ppm			Liter	ca. bar	m^3
Argon 4.6	≥ 99,996	H ₂ 0	≤ 5	Stahlflasche	10	200	2,13
		$\overline{O_2}$	≤ 4	Stahlflasche	20	200	4,27
		$\overline{N_2}$	≤ 10	Stahlflasche	50	200	10,7
		$\overline{\text{CO}_2}$	≤ 1	Stahlflasche	50	300	15,2
				Flaschenbündel	600	200	128
				Flaschenbündel	600	300	182
Argon für Spektrometrie	≥ 99,998	H ₂ 0	≤ 5	Stahlflasche	10	200	2,13
		$\overline{O_2}$	≤ 3	Stahlflasche	20	200	4,27
		$\overline{N_2}$	≤ 10	Stahlflasche	50	200	10,7
		KW	≤ 0,5	Stahlflasche	50	300	15,2
				Flaschenbündel	600	200	128
				Flaschenbündel	600	300	182
Argon 5.0	≥ 99,999	H ₂ 0	≤ 3	HiQ [®] MICROCAN	0,2	200	0,04
		$\overline{O_2}$	≤ 2	HiQ® MINICAN	1	12	0,012
		$\overline{N_2}$	≤ 5	HiQ® MAXICAN	1,2	40	0,048
		KW	≤ 0,2	Stahlflasche	10	200	2,13
				Stahlflasche	20	200	4,27
				Stahlflasche	50	200	10,7
				Stahlflasche	50	300	15,2
				Flaschenbündel	600	200	128
				Flaschenbündel	600	300	182
Argon 5.3	≥ 99,9993	H ₂ 0	≤ 2	Stahlflasche	1	200	0,213
-		$\overline{O_2}$	≤ 1	Stahlflasche	2	200	0,427
		$\overline{N_2}$	≤ 3	Stahlflasche	10	200	2,13
		KW	≤ 0, 1	Stahlflasche	50	200	10,7
				Stahlflasche	50	300	15,2
Argon 6.0	≥ 99,9999	H ₂ 0	≤ 0,5	Stahlflasche	2	200	0,427
		O_2	≤ 0,5	Stahlflasche	10	200	2,13
		$\overline{N_2}$	≤ 0,5	Stahlflasche	50	200	10,7
		CO	≤ 0, 1	Flaschenbündel	600	200	128
		KW	≤ 0, 1				
		$\overline{CO_2}$	≤ 0, 1				
		H ₂	≤ 0,5				
Argon 7.0	≥ 99,99999	H ₂ 0	≤ 0,05	Aluminiumflasche	10	150	1,61
S .	,	$\frac{2}{0_2}$	≤ 0,03	Aluminiumflasche	40	150	6,44
		CO	≤ 0,03				,
		KW	≤ 0,03				
		CO ₂	≤ 0,03				
		H ₂	≤ 0,03				
		hal. KW	≤ 0,001				

Argon Ar

Allgemeine Informationen

CAS	7440-37-1
UN	1006
Eigenschaften	verdichtetes Gas, erstickend, chemisch inert
Gefahrensymbole	♦
Flaschenschulter	
Ventilanschluss	Fülldruck 200 bar:
	W 21,80 x 1/14 nach DIN 477 Nr. 6
AGW	-
Relative Dichte bezogen auf	
trockene Luft (15°C, 1bar)	1,38
Konformitätserklärung	online verfügbar im Linde-Kundenportal unter
	www.linde-gas.de/direkt

m³ Gas	l flüssig	kg	
(15°C, 1bar)	bei T₅		
1	1,197	1,669	
0,835	1	1,394	
0,599	0,717	<u> </u>	

Arsin AsH₃

Produktspezifische Informationen

	Reinheit %	Nebenbestandteile ppm	Lieferarten	Rauminhalt Liter	Dampfdruck bar (bei 20°C)	Füllmenge kg
Arsin 5.0	≥ 99,999	H ₂ 0 :	2 Aluminiumflasche	2	15	0,3
		0 ₂	Aluminiumflasche	10	15	1
		N ₂	3			
		CO :	<u>1</u>			
		KW :	<u>1</u>			
		PH ₃ ≤ (,1			
		CO ₂	<u>1</u>			

Allgemeine Informationen

CAS	7784-42-1
UN	2188
Eigenschaften	sehr giftig, hochentzündlich, umweltgefährlich, unter Druck verflüssigtes Gas
Gefahrensymbole	
Flaschenschulter	
Ventilanschluss	W 21,80 x 1/14 LH nach DIN 477 Nr. 1
AGW	0,005 ppm
Relative Dichte bezogen auf	
trockene Luft (15°C, 1bar)	2,688
Konformitätserklärung	online verfügbar im Linde-Kundenportal unter
	www.linde-gas.de/direkt

m³ Gas	l flüssig	kg
(15°C, 1bar)	bei T _s	
1	1,991	3,253
0,502	1	1,634
0,307	0,612	1
-/	-/	*

Bortrichlorid BCI₃

Produktspezifische Informationen

	Reinheit %	Nebenbestandteile ppm		Lieferarten	Rauminhalt Liter	Dampfdruck bar (bei 20°C)	Füllmenge kg
Bortrichlorid 4.0	≥ 99,99	O_2	≤ 5	Stahlflasche	2	1,6	2
		N_2	≤ 50	Stahlflasche	10	1,6	10
		CO	≤ 5	Stahlflasche	50	1,6	50
		KW	≤ 5				
		CO ₂	≤ 50				
Bortrichlorid 5.0	≥ 99,999	02	≤ 1	Stahlflasche	2	1,6	2
		$\overline{N_2}$	≤ 2	Edelstahlflasche	10	1,6	10
		CO	≤ 1	Edelstahlflasche	47	1,6	50
		KW	≤ 1				
		CO ₂	≤ 5				
		Fe ≤0,2 (w	v/w)				

Allgemeine Informationen

CAS	10294-34-5
UN	1741
Eigenschaften	sehr giftig, ätzend, unter Druck verflüssigtes Gas
Gefahrensymbole	
Flaschenschulter	
Ventilanschluss	1 nach DIN 477 Nr. 8
AGW	5 ppm
Relative Dichte bezogen auf	-
trockene Luft (15°C, 1bar)	4,062
Konformitätserklärung	online verfügbar im Linde-Kundenportal unter
	www.linde-gas.de/direkt

m³ Gas (15°C, 1 bar)	l flüssig bei T,	kg	
1	3,65	4,913	
0,274		1,346	
0,204	0,743	1	

Bortrifluorid BF₃

Produktspezifische Informationen

	Reinheit %	Nebenbestan ppm	dteile	Lieferarten	Rauminhalt Liter	Fülldruck ca. bar	Füllmenge kg
Bortrifluorid 1.6	≥ 96			auf Anfrage lieferbar			_
Bortrifluorid 2.5	≥99,5	$\frac{O_2 + N_2}{SiF_4}$ $SO_2 + SO_3$	≤ 4000 ≤ 1000 ≤ 200	Stahlflasche	2	50	0,5

Allgemeine Informationen

CAS	7637-07-2
UN	1008
Eigenschaften	sehr giftig, ätzend, verdichtetes Gas
Gefahrensymbole	
Flaschenschulter	
Ventilanschluss	1 nach DIN 477 Nr. 8
AGW	0,35 ppm
Relative Dichte bezogen auf	
trockene Luft (15°C, 1bar)	2,37
Konformitätserklärung	online verfügbar im Linde-Kundenportal unter
S	www.linde-gas.de/direkt

Bromwasserstoff HBr

Produktspezifische Informationen

	Reinheit %	Nebenbestandteil ppm	e	Lieferarten	Rauminhalt Liter	Dampfdruck bar (bei 20°C)	Füllmenge kg
Bromwasserstoff 4.5	≥ 99,995	H_2O	≤ 5	Stahlflasche	2	21	2
		$\overline{O_2}$	≤ 3	Stahlflasche	10	21	12
		$\overline{N_2}$	≤ 10	Stahlflasche	50	21	50
		CO	≤ 1				
		KW	≤ 10				
		$\overline{CO_2}$	≤ 20				
		Fe ≤1	(w/w)				

Allgemeine Informationen

CAS	10035-10-6
UN	1048
Eigenschaften	giftig, ätzend, unter Druck verflüssigtes Gas
Gefahrensymbole	
Flaschenschulter	
Ventilanschluss	1 nach DIN 477 Nr. 8
AGW	2 ppm
Relative Dichte bezogen auf	
trockene Luft (15°C, 1bar)	2,818
Konformitätserklärung	online verfügbar im Linde-Kundenportal unter www.linde-gas.de/direkt

m³ Gas (15°C, 1 bar)	l flüssig bei T _s	kg	
1	1,548	3,409	
0,646		2,203	
0,293	0,454	1	

1,3-Butadien C₄H₆

Produktspezifische Informationen

	Reinheit %	Nebenbestand ppm	teile	Lieferarten	Rauminhalt Liter	Dampfdruck bar (bei 20°C)	Füllmenge kg
1,3-Butadien 2.5	≥ 99,5	sonstige KW	≤ 5000	Stahlflasche	7	2,48	3
				Stahlflasche	79	2,48	33

Allgemeine Informationen

CAS	106-99-0
UN	1010
Eigenschaften	hochentzündlich, unter Druck verflüssigtes Gas, krebserzeugend (Kat. 1)
Gefahrensymbole	⋄ ♦
Flaschenschulter	
Ventilanschluss	W 21,80 x 1/14 LH nach DIN 477 Nr. 1
AGW	5 ppm
Relative Dichte bezogen auf	-
trockene Luft (15°C, 1bar)	1,926
Konformitätserklärung	online verfügbar im Linde-Kundenportal unter www.linde-gas.de/direkt

m³ Gas	l flüssig	kg
(15°C, 1bar)	bei T _s	
1	3,584	2,33
),279	1	0,65
),429	1,538	1

Butan C₄H₁₀

Produktspezifische Informationen

	Reinheit %	Nebenbestand ^a	teile	Lieferarten	Rauminhalt Liter	Dampfdruck bar (bei 20°C)	Füllmenge kg
Butan 2.5	≥ 99,5	H ₂ O	≤ 50	HiQ [®] MINICAN	1	2,06	0,5
		sonstige KW	≤ 5000	Stahlflasche	7	2,06	3
				Stahlflasche	27	2,06	11
				Stahlflasche	79	2,06	38
				Stahlfass	950	2,06	485
Butan 3.5	≥ 99,95	H ₂ O	≤ 10	Stahlflasche	7	2,06	3
		sonstige KW	≤ 500	Stahlflasche	27	2,06	11
				Stahlflasche	79	2,06	38

Allgemeine Informationen

CAS	106-97-8
UN	1011
Eigenschaften	hochentzündlich, unter Druck verflüssigtes Gas
Gefahrensymbole	⋄ ⋄
Flaschenschulter	
Ventilanschluss	W 21,80 x 1/14 LH nach DIN 477 Nr. 1
AGW	1000 ppm
Relative Dichte bezogen auf	
trockene Luft (15°C, 1bar)	2,085
Konformitätserklärung	online verfügbar im Linde-Kundenportal unter
	www.linde-gas.de/direkt

m³ Gas (15°C, 1 bar)	l flüssig bei T _s	kg	
1	4,196	2,522	
0,238	1	0,601	
0,397	1,663		

1-Buten C₄H₈

Produktspezifische Informationen

	Reinheit %	Nebenbestand ppm	teile	Lieferarten	Rauminhalt Liter	Dampfdruck bar (bei 20°C)	Füllmenge kg
1-Buten 2.5	≥ 99,5	sonstige KW	≤ 5000	Stahlflasche	2	2,62	0,8
				Stahlflasche	7	2,62	3
				Stahlflasche	27	2,62	11
				Stahlflasche		2,62	33

Allgemeine Informationen

CAS	106-98-9
UN	1012
Eigenschaften	hochentzündlich, unter Druck verflüssigtes Gas
Gefahrensymbole	<u> </u>
Flaschenschulter	
Ventilanschluss	W 21,80 x 1/14 LH nach DIN 477 Nr. 1
AGW	1000 ppm
Relative Dichte bezogen auf	
trockene Luft (15°C, 1bar)	1,998
Konformitätserklärung	online verfügbar im Linde-Kundenportal unter
	www.linde-gas.de/direkt

l flüssig	kg
bei T₅	
3,836	2,417
1	0,63
1,587	1
	bei T _s 3,836 1

cis-2-Buten C₄H₈

Produktspezifische Informationen

	Reinheit %	Nebenbestandteile ppm	9	Lieferarten	Rauminhalt Liter	Dampfdruck bar (bei 20°C)	Füllmenge kg
cis-2-Buten 2.0	≥99	sonstige KW	≤ 1 %	Stahlflasche	7	1,8	3

Allgemeine Informationen

CAS	590-18-1
UN	1012
Eigenschaften	hochentzündlich, unter Druck verflüssigtes Gas
Gefahrensymbole	◆ ◆
Flaschenschulter	
	W 21,80 x 1/14 LH nach DIN 477 Nr. 1
AGW	-
Relative Dichte bezogen auf	
trockene Luft (15°C, 1bar)	2,004
Konformitätserklärung	online verfügbar im Linde-Kundenportal unter www.linde-gas.de/direkt

m³ Gas (15°C, 1 bar)	l flüssig bei T _s	kg	
1	3,781	2,424	
0,264	1	0,641	
0,413	1,56	1	

trans-2-Buten C₄H₈

Produktspezifische Informationen

	Reinheit	Nebenbestandteile	j	Lieferarten	Rauminhalt	Dampfdruck	Füllmenge
	0/0	ppm			Liter	bar (bei 20°C)	kg
trans-2-Buten 2.0	≥99	sonstige KW	≤ 1 %	Stahlflasche	7	2,05	3

Allgemeine Informationen

CAS	624-64-6
UN	1012
Eigenschaften	hochentzündlich, unter Druck verflüssigtes Gas
Gefahrensymbole	◆
Flaschenschulter	
Ventilanschluss	W 21,80 x 1/14 LH nach DIN 477 Nr. 1
AGW	-
Relative Dichte bezogen auf	
trockene Luft (15°C, 1bar)	2,005
Konformitätserklärung	online verfügbar im Linde-Kundenportal unter www.linde-gas.de/direkt

m³ Gas (15°C, 1bar)	l flüssig bei T _s	kg
1	3,872	2,425
0,258	1	0,626
0,412	1,597	

Chlor Cl₂

Produktspezifische Informationen

	Reinheit %	Nebenbestand ppm	teile	Lieferarten	Rauminhalt Liter	Dampfdruck bar (bei 20°C)	Füllmenge kg
Chlor 2.8	≥ 99,8			Stahlflasche	2	6,88	2,5
				Stahlflasche	10	6,88	12,5
				Stahlflasche	50	6,88	62,5
Chlor 5.0	≥ 99,999	H ₂ 0	≤ 1	Stahlflasche	2	6,88	2
		02	≤ 1	Stahlflasche	10	6,88	10
		$\overline{N_2}$	≤ 2	Edelstahlflasche	10	6,88	10
		CO	≤ 1	Edelstahlflasche	55	6,88	50
		KW	≤ 1	Stahlflasche	50	6,88	60
		$\overline{CO_2}$	≤ 5				
		Fe ≤	0,5 (w/w)				

Allgemeine Informationen

CAS	7782-50-5
UN	1017
Eigenschaften	giftig, reizend, umweltgefährlich,
	unter Druck verflüssigtes Gas
Gefahrensymbole	
Flaschenschulter	
Ventilanschluss	1 nach DIN 477 Nr. 8
AGW	0,5 ppm
Relative Dichte bezogen auf	
trockene Luft (15°C, 1bar)	2,486
Konformitätserklärung	online verfügbar im Linde-Kundenportal unter
	www.linde-gas.de/direkt

m³ Gas (15°C, 1bar)	l flüssig bei T _s	kg	
1	1,924	3,007	
0,52	1	1,563	
0,333	0,64		

Chlordifluormethan CHClF₂

Produktspezifische Informationen

	Reinheit	Nebenbestandteile	Lieferarten	Rauminhalt	Dampfdruck	Füllmenge
	0/0	ppm		Liter	bar (bei 20°C)	kg
Chlordifluormethan 2.8 (R 22)	≥ 99,8		auf Anfrage lieferbar		9,22	

Allgemeine Informationen

CAS	75-45-6
UN	1018
Eigenschaften	umweltgefährlich, unter Druck verflüssigtes Gas, erstickend
Gefahrensymbole	♦ ♦
Flaschenschulter	
Ventilanschluss	W 21,80 x 1/14 nach DIN 477 Nr. 6
AGW	1000 ppm
Relative Dichte bezogen auf	
trockene Luft (15°C, 1bar)	3,034
Konformitätserklärung	online verfügbar im Linde-Kundenportal unter
S	www.linde-gas.de/direkt

m³ Gas (15°C, 1bar)	l flüssig bei T₅	kg
1	2,597	3,67
0,385	1	1,413
0,272	0,708	1

Chlorethen C₂H₃Cl

Produktspezifische Informationen

	Reinheit	Nebenbestandteile	Lieferarten	Rauminhalt	Dampfdruck	Füllmenge
	0/0	ppm		Liter	bar (bei 20°C)	kg
Chlorethen 3.7	≥ 99,97		auf Anfrage lieferbar		3,37	

Allgemeine Informationen

CAS	75-01-4
UN	1086
Eigenschaften	hochentzündlich, unter Druck verflüssigtes Gas, krebserzeugend (Kat. 1)
Gefahrensymbole	⋄ ♦
Flaschenschulter	
Ventilanschluss	W 21,80 x 1/14 LH nach DIN 477 Nr. 1
AGW	3 ppm
Relative Dichte bezogen auf	
trockene Luft (15°C, 1bar)	2,199
Konformitätserklärung	online verfügbar im Linde-Kundenportal unter www.linde-gas.de/direkt

m³ Gas (15°C, 1bar)	l flüssig bei T _s	kg	
1	2,739	2,659	_
0,365	1	0,971	_
0,376	1,03	1	

Chlormethan CH₃Cl

Produktspezifische Informationen

	Reinheit %	Nebenbestandteile ppm	Lieferarten	Rauminhalt Liter	Dampfdruck bar (bei 20°C)	Füllmenge kg
Chlormethan 2.8	≥ 99,8		Stahlflasche	2	5	1,5
			Stahlflasche	10	5	8,1

Allgemeine Informationen

CAS	74-87-3
UN	1063
Eigenschaften	hochentzündlich, unter Druck verflüssigtes Gas, gesundheitsschädlich, krebserzeugend (Kat. 3)
Gefahrensymbole	
Flaschenschulter	
Ventilanschluss	W 21,80 x 1/14 LH nach DIN 477 Nr. 1
AGW	50 ppm
Relative Dichte bezogen auf	
trockene Luft (15°C, 1bar)	1,767
Konformitätserklärung	online verfügbar im Linde-Kundenportal unter www.linde-gas.de/direkt

m³ Gas	l flüssig	kg
(15°C, 1bar)	bei T _s	
1	2,131	2,137
0,469	1	1,003
0,468	0,997	1

Chlorwasserstoff HCl

Produktspezifische Informationen

	Reinheit %	Nebenbestandteile ppm	Lieferarten	Rauminhalt Liter	Dampfdruck bar (bei 20°C)	Füllmenge kg
Chlorwasserstoff 2.8	≥ 99,8	H ₂ 0 ≤	10 Stahlflasche	2	42,6	1,0
			Stahlflasche	10	42,6	6,0
			Stahlflasche	50	42,6	37
			Stahlfass	800	42,6	590
Chlorwasserstoff 4.5	≥ 99,995	H ₂ 0 :	2 Stahlflasche	2	42,6	1
		0 ₂	5 Stahlflasche	10	42,6	6
		N ₂ ≤	10 Stahlflasche	50	42,6	37
		CO ::	2			
		KW :	2			
		CO ₂ ≤	40			
Chlorwasserstoff 5.0	≥ 99,999	H ₂ 0 :	2 Stahlflasche	10	42,6	6
		0 ₂	1 Stahlflasche	50	42,6	37
			4 Stahlfass	800	42,6	590
			<u>1</u>			
		KW :	<u>.</u> 1			
		CO ₂	3			
		Fe ≤1 (w/	<u>v)</u>			
Chlorwasserstoff 5.5	≥ 99,9995		1 Stahlflasche	2	42,6	1
		O ₂ ≤ (,5 Stahlflasche	10	42,6	6
			1 Stahlflasche	50	42,6	36
			,5			
		KW ≤ (
			<u>. </u>			
		Fe ≤ 0,1 (w/	<u>v)</u>			

Allgemeine Informationen

CAS	7647-01-0
UN	1050
Eigenschaften	giftig, ätzend, unter Druck verflüssigtes Gas
Gefahrensymbole	
Flaschenschulter	
Ventilanschluss	1 nach DIN 477 Nr. 8
AGW	2 ppm
Relative Dichte bezogen auf	
trockene Luft (15°C, 1bar)	1,27
Konformitätserklärung	online verfügbar im Linde-Kundenportal unter www.linde-gas.de/direkt

m³ Gas	l flüssig	kg
(15°C, 1bar)	bei T _s	
1	1,29	1,536
0,775	1	1,191
0,651	0,84	1

Deuterium D₂

Produktspezifische Informationen

	Reinheit %	Nebenbestandteile ppm	Lieferarten	Rauminhalt Liter	Fülldruck ca. bar	Füllmenge m³
Deuterium	≥99,9		HiQ [®] MICROCAN	0,2	150	0,03
	(Anreicherung]	HiQ® MINICAN	1	12	0,012
	≥99,8%)		Stahlflasche	2	50	0,098
			Stahlflasche	10	100	0,961
			Stahlflasche	10	200	1,83
			Stahlflasche	50	100	4,8
			Stahlflasche	50	200	9,17

Allgemeine Informationen

CAS	7782-39-0
UN	1957
Eigenschaften	hochentzündlich, verdichtetes Gas
Gefahrensymbole	⊗ ♦
Flaschenschulter	
Ventilanschluss	W 21,80 x 1/14 LH nach DIN 477 Nr. 1
AGW	-
Relative Dichte bezogen auf	
trockene Luft (15°C, 1bar)	0,138
Konformitätserklärung	online verfügbar im Linde-Kundenportal unter www.linde-gas.de/direkt

m³ Gas	l flüssig	kg
(15°C, 1bar)	bei T _s	
1	1,0265	0,1667
0,9742	1	0,1624
5,9988	6,1576	1

Dichlorsilan SiH₂Cl₂

Produktspezifische Informationen

	Reinheit %	Nebenbesta ppm	ndteile	Lieferarten	Rauminhalt Liter	Dampfdruck bar (bei 20°C)	Füllmenge kg
Dichlorsilan 2.0	≥ 99	В	≤ 0,5 ppb (w/w)	Stahlflasche	2	1,6	1,5
		Р	≤ 1 ppb (w/w)	Stahlflasche	10	1,6	9
		Fe	≤ 50 ppb (w/w)	Stahlflasche	50	1,6	45
		As	≤ 1 ppb (w/w)				
		andere	≤ 1 % (w/w)				
		Chlorsilane					
Dichlorsilan 3.0	≥ 99,9	В	≤ 0,3 ppb (w/w)	Edelstahlflasche	10	1,6	9
		Р	≤ 1 ppb (w/w)	Edelstahlflasche	47	1,6	42
		Fe	≤ 25 ppb (w/w)				
		As	≤ 1 ppb (w/w)				
		andere	≤ 0,1 % (w/w)				
		Chlorsilane					

Allgemeine Informationen

CAS	4109-96-0
UN	2189
Eigenschaften	unter Druck verflüssigtes Gas, hochentzündlich,
	ätzend, giftig
Gefahrensymbole	
Flaschenschulter	
Ventilanschluss	1 LH nach DIN 477 Nr. 5
AGW	5 ppm
Relative Dichte bezogen auf	
trockene Luft (15°C, 1bar)	3,63
Konformitätserklärung	online verfügbar im Linde-Kundenportal unter
	www.linde-gas.de/direkt

m³ Gas (15°C, 1 bar)	l flüssig bei T _s	kg
1	3,487	4,397
0,287	<u>1</u>	1,261
0,227	0,793	<u> </u>

Difluormethan CH₂F₂

Produktspezifische Informationen

	Reinheit %	Nebenbestandteile ppm	Lieferarten	Rauminhalt Liter	Dampfdruck bar (bei 20°C)	Füllmenge kg
Difluormethan 3.0	≥99,9		Stahlflasche	2	14,7	0,06
			Stahlflasche	10	14,7	0,3

Allgemeine Informationen

CAS	75-10-5
UN	3252
Eigenschaften	hochentzündlich, unter Druck verflüssigtes Gas
Gefahrensymbole	◆
Flaschenschulter	
Ventilanschluss	W 21,80 x 1/14 LH nach DIN 477 Nr. 1
AGW	1000 ppm
Relative Dichte bezogen auf	
trockene Luft (15°C, 1bar)	2,25
Konformitätserklärung	online verfügbar im Linde-Kundenportal unter www.linde-gas.de/direkt

m³ Gas (15°C, 1 bar)	l flüssig bei T _s	kg	
1	2,246	2,724	
0,445		1,213	
0,367	0,824		

Dimethylamin C₂H₇N

Produktspezifische Informationen

	Reinheit %	Nebenbestandte ppm	ile	Lieferarten	Rauminhalt Liter	Dampfdruck bar (bei 20°C)	Füllmenge kg
Dimethylamin 2.0	≥ 99	andere Amine	≤ 1 %	Stahlflasche	2	1,7	1
				Stahlflasche	10	1,7	5,6

Allgemeine Informationen

CAS	124-40-3
UN	1032
Eigenschaften	hochentzündlich, unter Druck verflüssigtes Gas, gesundheitsschädlich
Gefahrensymbole	
Flaschenschulter	
Ventilanschluss	W 21,80 x 1/14 LH nach DIN 477 Nr. 1
AGW	2 ppm
Relative Dichte bezogen auf	
trockene Luft (15°C, 1bar)	1,607
Konformitätserklärung	online verfügbar im Linde-Kundenportal unter www.linde-gas.de/direkt

m³ Gas (15°C, 1bar)	l flüssig bei T₅	kg	
1	2,897	1,944	
0,345	1	0,671	
0,514	1,49	<u> </u>	

Dimethylether C₂H₆O

Produktspezifische Informationen

	Reinheit %	Nebenbestandteile ppm	Lieferarten	Rauminhalt Liter	Dampfdruck bar (bei 20°C)	Füllmenge kg
Dimethylether 3.0	≥ 99,9		Stahlflasche	10	5,31	5,8

Allgemeine Informationen

CAS	115-10-6
UN	1033
Eigenschaften	hochentzündlich, unter Druck verflüssigtes Gas
Gefahrensymbole	<u></u> ♠♦
Flaschenschulter	
Ventilanschluss	W 21,80 x 1/14 LH nach DIN 477 Nr. 1
AGW	1000 ppm
Relative Dichte bezogen auf	
trockene Luft (15°C, 1bar)	1,624
Konformitätserklärung	online verfügbar im Linde-Kundenportal unter www.linde-gas.de/direkt

kg
1,964
0,735
1

Disilan Si₂H₆

Produktspezifische Informationen

	Reinheit %	Nebenbestandteile ppm		Lieferarten	Rauminhalt Liter	Dampfdruck bar (bei 20°C)	Füllmenge kg
Disilan 4.8	≥ 99,998	H ₂ 0	≤ 1	Aluminiumflasche	2	2,3	0,1
		$\overline{O_2}$	≤ 1	Stahlflasche	10	2,3	0,5
		$\overline{N_2}$	≤ 4				
		KW	≤ 1				
		CO ₂	≤ 1				
		Chlorsilane	≤ 0,2				

Allgemeine Informationen

CAS	1590-87-0
UN	3161
Eigenschaften	selbstentzündlich an der Luft, hochentzündlich,
	unter Druck verflüssigtes Gas
Gefahrensymbole	◆
Flaschenschulter	
Ventilanschluss	W 21,80 x 1/14 LH nach DIN 477 Nr. 1
AGW	-
Relative Dichte bezogen auf	
trockene Luft (15°C, 1bar)	2,2
Konformitätserklärung	online verfügbar im Linde-Kundenportal unter
	www.linde-gas.de/direkt

m³ Gas (15°C, 1bar)	l flüssig bei T _s	kg	
1	2,957	2,664	Т
0,338		0,901	Т
0,375		<u> </u>	

Distickstoffmonoxid N₂O

Produktspezifische Informationen

	Reinheit %	Nebenbestand ppm	teile	Lieferarten	Rauminhalt Liter	Dampfdruck bar (bei 20°C)	Füllmenge kg
Distickstoffmonoxid 2.5	≥ 99,5	H ₂ O	≤ 10	HiQ [®] MINICAN	1	12*	0,021
		Luft-	≤ 5000	Stahlflasche	10	50,8	7,5
		bestandteile		Stahlflasche	40	50,8	29,6
				Stahlflasche	50	50,8	37,5
Distickstoffmonoxid 5.0	≥ 99,999	H ₂ 0	≤ 1	Stahlflasche	2	50,8	1,4
		$\overline{O_2}$	≤ 1	Stahlflasche	10	50,8	7
		N_2	≤ 5	Stahlflasche	50	50,8	37
		CO	≤ 1				
		KW	≤ 1				
		CO ₂	≤ 1				

^{*} Fülldruck

Allgemeine Informationen

CAS	10024-97-2
UN	1070
Eigenschaften	unter Druck verflüssigtes Gas, brandfördernd
Gefahrensymbole	♦
Flaschenschulter	
Ventilanschluss	G 3/8 nach DIN 477 Nr. 11; Distickstoffmonoxid
	2.5: für Stahlflaschen bis 3 Liter Rauminhalt
	G 3/4 Innengewinde nach DIN 477 Nr. 12
AGW	100 ppm
Relative Dichte bezogen auf	
trockene Luft (15°C, 1bar)	1,532
Konformitätserklärung	online verfügbar im Linde-Kundenportal unter
	www.linde-gas.de/direkt

l flüssig	kg
bei T _s	
1,515	1,853
1	1,223
0,818	1
	bei T _s 1,515 1

Ethan C₂H₆

Produktspezifische Informationen

	Reinheit %	Nebenbestand ppm	teile	Lieferarten	Rauminhalt Liter	Dampfdruck bar (bei 20°C)	Füllmenge kg
Ethan 2.5	≥ 99,5	sonstige KW	≤ 5000	HiQ® MINICAN	1	12*	0,014
		5		Stahlflasche	2	37,76	0,8
				Stahlflasche	10	37,76	3,5
				Stahlflasche	50	37,76	17,5
Ethan 3.5	≥ 99,95	sonstige KW	≤ 450	Stahlflasche	2	37,76	0,8
				Stahlflasche	10	37,76	3,5
				Stahlflasche	50	37,76	17,5

^{*} Fülldruck

Allgemeine Informationen

CAS	74-84-0
UN	1035
Eigenschaften	hochentzündlich, unter Druck verflüssigtes Gas
Gefahrensymbole	<u></u>
Flaschenschulter	
Ventilanschluss	W 21,80 x 1/14 LH nach DIN 477 Nr. 1
AGW	-
Relative Dichte bezogen auf	
trockene Luft (15°C, 1bar)	1,046
Konformitätserklärung	online verfügbar im Linde-Kundenportal unter
	www.linde-gas.de/direkt

m³ Gas (15°C, 1bar)	l flüssig bei T₅	kg	
1	2,315	1,265	_
0,432	1	0,547	
0.791	1.83		_

Ethen C₂H₄

Produktspezifische Informationen

	Reinheit	Nebenbestand	teile	Lieferarten	Rauminhalt	Fülldruck	Füllmenge
	%	ppm			Liter	ca. bar	kg
Ethen 3.0	≥99,9	02	≤ 20	HiQ [®] MINICAN	1	12	0,013
		N_2	≤ 100	Stahlflasche	2	120	0,7
		sonstige KW	≤ 1000	Stahlflasche	10	120	3,7
				Stahlflasche	50	120	18,5
				Flaschenbündel	600	120	222
Ethen 3.5	≥ 99,95	H ₂ 0	≤ 10	Stahlflasche	2	62	0,4
		$\overline{O_2}$	≤ 15	Stahlflasche	10	120	3,4
		$\overline{N_2}$	≤ 50	Stahlflasche	50	120	16,9
		sonstige KW	≤ 450				
Ethen 4.5	≥ 99,995	H ₂ O	≤ 5	Stahlflasche	10	120	3,4
		$\overline{O_2}$	≤ 2	Stahlflasche	50	120	16,9
		$\overline{N_2}$	≤ 5				
		CO ₂	≤ 5				
		sonstige KW	≤ 40				

Allgemeine Informationen

CAS	74-85-1
UN	1962
Eigenschaften	hochentzündlich, verdichtetes Gas
Gefahrensymbole	◆ ◆◆
Flaschenschulter	
Ventilanschluss	W 21,80 x 1/14 LH nach DIN 477 Nr. 1
AGW	-
Relative Dichte bezogen auf	
trockene Luft (15°C, 1bar)	0,974
Konformitätserklärung	online verfügbar im Linde-Kundenportal unter www.linde-gas.de/direkt

m³ Gas	l flüssig	kg
(15°C, 1bar)	bei T _s	
1	2,074	1,178
0,482	1	0,568
0,849	1,761	1

Ethylenoxid C₂H₄O

Produktspezifische Informationen

	Reinheit	Nebenbestandteile	Lieferarten	Rauminhalt	Dampfdruck	Füllmenge
	0/0	ppm		Liter	bar (bei 20°C)	kg
Ethylenoxid 3.0	≥ 99,9		auf Anfrage lieferbar		1,4	

Allgemeine Informationen

CAS	75-21-8
UN	1040
Eigenschaften	giftig, reizend, hochentzündlich, unter Druck verflüssigtes Gas, erbgutverändernd (Kat. 2), krebserzeugend (Kat. 2)
Gefahrensymbole	
Flaschenschulter	
Ventilanschluss	W 21,80 x 1/14 LH nach DIN 477 Nr. 1
AGW	1 ppm
Relative Dichte bezogen auf	
trockene Luft (15°C, 1bar)	1,57
Konformitätserklärung	online verfügbar im Linde-Kundenportal unter www.linde-gas.de/direkt

m³ Gas (15°C, 1bar)	l flüssig bei T _s	kg	
1	2,141	1,899	
),467	1	0,887	
),527	1,127		

Fluormethan CH₃F

Produktspezifische Informationen

	Reinheit %	Nebenbestandteile ppm	Lieferarten	Rauminhalt Liter	Dampfdruck bar (bei 20°C)	Füllmenge kg
Fluormethan 2.5 (R 41)	≥ 99,5	H ₂ 0 ≤ 100	Stahlflasche	2	33	0,2
		O ₂ ≤ 1200	Stahlflasche	10	33	1
		N ₂ ≤ 3600				

Allgemeine Informationen

CAS	593-53-3
UN	2454
Eigenschaften	hochentzündlich, unter Druck verflüssigtes Gas
Gefahrensymbole	<u></u>
Flaschenschulter	
Ventilanschluss	W 21,80 x 1/14 LH nach DIN 477 Nr. 1
AGW	-
Relative Dichte bezogen auf	
trockene Luft (15°C, 1bar)	1,19
Konformitätserklärung	online verfügbar im Linde-Kundenportal unter
	www.linde-gas.de/direkt

m³ Gas (15°C, 1bar)	l flüssig bei T _s	kg	
1	1,788	1,445	_
0,559	1	0,808	_
0,692	1,238	<u> </u>	_

Fluorwasserstoff HF

Produktspezifische Informationen

	Reinheit %	Nebenbestand ppm	eile	Lieferarten	Rauminhalt Liter	Dampfdruck bar (bei 20°C)	Füllmenge kg
Fluorwasserstoff 3.5	≥ 99,95	H_20	≤ 200	Stahlflasche	50	1,03	41
		SO ₂	≤ 10				
		H ₂ SO ₄	≤ 300				
		H ₂ SiF ₆	≤ 20				

Allgemeine Informationen

CAS	7664-39-3
UN	1052
Eigenschaften	sehr giftig, ätzend, unter Druck verflüssigtes Gas
Gefahrensymbole	
Flaschenschulter	
Ventilanschluss	Pneumatik: 1 nach DIN 477 Nr. 8
AGW	3 ppm
Relative Dichte bezogen auf	
trockene Luft (15°C, 1bar)	0,7
Konformitätserklärung	online verfügbar im Linde-Kundenportal unter
	www.linde-gas.de/direkt

m³ Gas (15°C, 1bar)	l flüssig bei T _s	kg	
1	0,9	0,87	
1,11		0,97	
1,15	1,03	<u> </u>	

German GeH₄

Produktspezifische Informationen

	Reinheit %	Nebenbestandteile ppm		Lieferarten	Rauminhalt Liter	Fülldruck ca. bar	Füllmenge kg
German 5.0	≥ 99,999	H ₂ 0	≤ 1	Aluminiumflasche	10	6	0,2
		N_2	≤ 2	Stahlflasche	50	6	1,0
		CO	≤ 1				
		CH ₄	≤ 1				
		CO ₂	≤ 2				
		H ₂	≤ 50				
		Ge ₂ H ₆	≤ 20				
		Ge ₃ H ₈	≤ 1				
		0 ₂ + Ar =	≤ 0,5				

Allgemeine Informationen

CAS	7782-65-2
UN	2192
Eigenschaften	sehr giftig, selbstentzündlich an der Luft,
	hochentzündlich, verdichtetes Gas
Gefahrensymbole	
Flaschenschulter	
Ventilanschluss	W 21,80 x 1/14 LH nach DIN 477 Nr. 1
AGW	0,2 ppm
Relative Dichte bezogen auf	
trockene Luft (15°C, 1bar)	2,6
Konformitätserklärung	online verfügbar im Linde-Kundenportal unter
	www.linde-gas.de/direkt

m³ Gas	l flüssig	kg
(15°C, 1bar)	bei T _s	
1	0,248	2,969
0,458	1	1,36
2,967	0,735	1

Helium He

Produktspezifische Informationen

	Reinheit	Nebenbestan	dteile	Lieferarten	Rauminhalt	Fülldruck	Füllmenge
	0/0	ppm			Liter	ca. bar	m^3
Helium 4.6	≥ 99,996	H ₂ 0	≤ 5	Stahlflasche	10	200	1,83
		$\overline{O_2}$	≤ 5	Stahlflasche	20	200	3,65
		$\overline{N_2}$	≤ 20	Stahlflasche	50	200	9,13
		KW	≤ 1	Stahlflasche	50	300	13,2
				Flaschenbündel	600	200	110
				Flaschenbündel	600	300	158
Helium 5.0	≥ 99,999	H ₂ 0	≤ 3	HiQ [®] MICROCAN	0,2	200	0,04
		$\overline{O_2}$	≤ 2	HiQ [®] MINICAN		12	0,012
		$\overline{N_2}$	≤ 3	HiQ [®] MAXICAN	1,2	40	0,048
		KW	≤ 0,2	ECOCYL®		150	0,15
				Stahlflasche	10	200	1,83
				Stahlflasche	50	200	9,13
				Flaschenbündel	600	200	110
				Flaschenbündel	600	300	158
Helium 5.3	≥ 99,9993	H ₂ 0	≤ 2	Stahlflasche	1	200	0,183
		$\overline{O_2}$	≤ 1	Stahlflasche	2	200	0,365
		$\overline{N_2}$	≤ 2	Stahlflasche	10	200	1,83
		KW	≤ 0,1	Stahlflasche	50	200	9,13
Helium 5.5 ECD	≥ 99,9995	H ₂ 0	≤ 1	Stahlflasche	50	200	9,13
		$\overline{O_2}$	≤ 1				
		$\overline{N_2}$	≤ 2				
		CO	≤ 0,5				
		KW	≤ 0,1				
		$\overline{CO_2}$	≤ 0,5				
		hal. KW	≤ 0,001				
Helium 6.0	≥ 99,9999	H ₂ 0	≤ 0,5	Stahlflasche	2	200	0,365
		$\overline{O_2}$	≤ 0,5	Stahlflasche	10	200	1,83
		$\overline{N_2}$	≤ 0,5	Stahlflasche	50	200	9,13
		CO	≤ 0,1	Stahlflasche	50	300	13,2
		KW	≤ 0,1	Flaschenbündel	600	200	110
		$\overline{CO_2}$	≤ 0,1				
		$\overline{H_2}$	≤ 0,5				
Helium 7.0	≥ 99,99999	H ₂ 0	≤ 0,05	Aluminiumflasche	10	150	1,4
		$\overline{O_2}$	≤ 0,03	Aluminiumflasche	40	150	5,6
		CO	≤ 0,03				
		KW	≤ 0,03				
		CO ₂	≤ 0,03				
		H ₂	≤ 0,03				
		hal. KW	≤ 0,001				

Allgemeine Informationen

CAS	7440-59-7
UN	1046
Eigenschaften	verdichtetes Gas, erstickend, chemisch inert
Gefahrensymbole	$\overline{\diamondsuit}$
Flaschenschulter	
Ventilanschluss	Fülldruck 200 bar:
	W 21,80 x 1/14 nach DIN 477 Nr. 6
	Fülldruck 300 bar (Bündel):
	W 30 x 2 nach DIN 477-5 Nr. 54
AGW	-
Relative Dichte bezogen auf	
trockene Luft (15°C, 1bar)	0,138
Konformitätserklärung	online verfügbar im Linde-Kundenportal unter www.linde-gas.de/direkt

m³ Gas	l flüssig	kg	
(15°C, 1bar)	bei T _s		
1	1,336	0,167	
0,7485	1	0,125	
5,988	8		

Helium-3 ³He

Produktspezifische Informationen

	Reinheit %	Nebenbestandteile ppm	Lieferarten
Helium-3	≥99,99		auf Anfrage lieferbar
	(Anreicherun	g	
	≥99,9%)		

Allgemeine Informationen

CAS	14762-55-1
UN	1046
Eigenschaften	verdichtetes Gas, erstickend, chemisch inert
Gefahrensymbole	<u></u>
Flaschenschulter	
Ventilanschluss	W 21,80 x 1/14 nach DIN 477 Nr. 6
AGW	-
Relative Dichte bezogen auf	
trockene Luft (15°C, 1bar)	0,106
Konformitätserklärung	online verfügbar im Linde-Kundenportal unter www.linde-gas.de/direkt

m³ Gas (15°C, 1bar)	l flüssig bei T₅	kg
1	2,169	0,128
0,461	1	0,059
7,813	16,949	1

Hexafluorethan C₂F₆

Produktspezifische Informationen

	Reinheit %	Nebenbestandte ppm	ile	Lieferarten	Rauminhalt Liter	Fülldruck ca. bar	Füllmenge kg
Hexafluorethan 5.0	≥ 99,999	H_2O	≤ 1	Stahlflasche	2	33	1,5
		CO	≤ 1	Stahlflasche	10	33	10
		$O_2 + N_2$	≤ 5	Aluminiumflasche	40	33	30
		CO ₂	≤ 1	Stahlflasche	50	33	50
		andere hal. KW	≤ 5				
		Säure s	≤0,1 (w/w)				

Allgemeine Informationen

CAS	76-16-4
UN	2193
Eigenschaften	verdichtetes Gas, erstickend
Gefahrensymbole	<i>♦</i>
Flaschenschulter	
Ventilanschluss	W 21,80 x 1/14 nach DIN 477 Nr. 6
AGW	- -
Relative Dichte bezogen auf	
trockene Luft (15°C, 1bar)	4,817
Konformitätserklärung	online verfügbar im Linde-Kundenportal unter
	www.linde-gas.de/direkt

m³ Gas (15°C, 1bar)	l flüssig bei T _s	kg	
1	3,625	5,829	
0,276		1,608	
0,172	0,622	1	

Isobutan C₄H₁₀

Produktspezifische Informationen

	Reinheit %	Nebenbestand ppm	teile	Lieferarten	Rauminhalt Liter	Dampfdruck bar (bei 20°C)	Füllmenge kg
Isobutan 2.5	≥ 99,5	H_2O	≤ 50	HiQ® MINICAN	1	3,04	0,45
		sonstige KW	≤ 5000	Stahlflasche	7	3,04	3
				Stahlflasche	27	3,04	11
				Stahlflasche	79	3,04	38
				Stahlfass	950	3,04	465
Isobutan 3.5	≥ 99,95	H ₂ O	≤ 10	Stahlflasche	2	3,04	0,8
		sonstige KW	≤ 500	Stahlflasche	7	3,04	3
				Stahlflasche	27	3,04	11
				Stahlflasche	79	3,04	38

Allgemeine Informationen

CAS	75-28-5
UN	1969
Eigenschaften	hochentzündlich, unter Druck verflüssigtes Gas
Gefahrensymbole	<u> </u>
Flaschenschulter	
Ventilanschluss	W 21,80 x 1/14 LH nach DIN 477 Nr. 1
AGW	1000 ppm
Relative Dichte bezogen auf	
trockene Luft (15°C, 1bar)	2,079
Konformitätserklärung	online verfügbar im Linde-Kundenportal unter www.linde-gas.de/direkt

m³ Gas (15°C, 1 bar)	l flüssig bei T _s	kg	
1	4,237	2,514	
0,236		0,593	
0,398	1,685		

Isobuten C₄H₈

Produktspezifische Informationen

	Reinheit %	Nebenbestandt ppm	teile	Lieferarten	Rauminhalt Liter	Dampfdruck bar (bei 20°C)	Füllmenge kg
Isobuten 3.0	≥99,9	sonstige KW	≤ 1000	Stahlflasche	2	2,68	0,8
				Stahlflasche	7	2,68	3
				Stahlflasche	79	2,68	33

Allgemeine Informationen

CAS	115-11-7
UN	1055
Eigenschaften	hochentzündlich, unter Druck verflüssigtes Gas
Gefahrensymbole	*
Flaschenschulter	
Ventilanschluss	W 21,80 x 1/14 LH nach DIN 477 Nr. 1
AGW	-
Relative Dichte bezogen auf	
trockene Luft (15°C, 1bar)	1,999
Konformitätserklärung	online verfügbar im Linde-Kundenportal unter www.linde-gas.de/direkt

m³ Gas (15°C, 1bar)	l flüssig bei T₅	kg	
1	3,863	2,418	
0,259	1	0,626	
0,413	1,597	1	

Kohlendioxid CO₂

Produktspezifische Informationen

	Reinheit %	Nebenbesta ppm	ındteile	Lieferarten	Rauminhalt Liter	Dampfdruck bar (bei 20°C)	Füllmenge kg
Kohlendioxid	≥ 99,5	H ₂ 0	≤ 250	Stahlflasche	13	57,29	10
				Stahlflasche	27	57,29	20
				Stahlflasche	40	57,29	30
				Stahlflasche	50	57,29	37,5
				Flaschenbündel	600	57,29	450
VERISEQ® GAC Pharma	≥99,9	H ₂ 0	≤ 67	Stahlflasche	50	57,29	37,5
Kohlendioxid für die		CO	≤ 5				
pharmazeutische Industrie		NH ₃	≤ 25				
		NO + NO _x	≤ 2				
		S	≤ 1				
Kohlendioxid 4.5	≥ 99,995	H ₂ 0	≤ 5	HiQ [®] MINICAN	1	12*	0,021
		$\overline{O_2}$	≤ 15	Stahlflasche	2	57,29	1,5
		$\overline{N_{2}}$	≤ 25	Stahlflasche	10	57,29	7,5
		CO	≤ 1	Stahlflasche	50	57,29	37,5
		KW	≤ 1	Flaschenbündel	600	57,29	450
Kohlendioxid 4.8	≥ 99,998	H ₂ 0	≤ 5	Stahlflasche	10	57,29	6,6
		$\overline{O_{2}}$	≤ 2	Stahlflasche	50	57,29	37,5
		$\overline{N_{2}}$	≤ 10				
		CO	≤ 1				
		KW	≤ 2				
Kohlendioxid 5.3	≥ 99,9993	H ₂ 0	≤ 1	Stahlflasche	10	57,29	6,6
		$\overline{O_{2}}$	≤ 2	Stahlflasche	50	57,29	37,5
		$\overline{N_2}$	≤ 3				
		CO	≤ 0,5				
		KW	≤ 1				
Kohlendioxid SFC/SFE	≥ 99,9993	H ₂ 0	≤ 1	Aluminiumflasche	40	57,29	30
		$\overline{O_2}$	≤ 2				
		$\overline{N_2}$	≤ 3				
		CO	≤ 0,5				
		KW	≤ 1				
Kohlendioxid SFE-hochrein	≥ 99,9996	H ₂ 0	≤ 1	Aluminiumflasche	10	57,29	6
		$\overline{O_2}$	≤ 1	Aluminiumflasche	10	120*	5,5
		$\overline{N_2}$	≤ 2	Aluminiumflasche	31,5	57,29	19,6
		CO	≤ 0,5	Aluminiumflasche	31,5	120*	17,3
		KW	≤ 0,01				
		hal. KW	≤ 0,01 ppb				

^{*} Fülldruck

Allgemeine Informationen

CAS	124-38-9
UN	1013
Eigenschaften	unter Druck verflüssigtes Gas, erstickend
Gefahrensymbole	♦
Flaschenschulter	
Ventilanschluss	W 21,80 x 1/14 nach DIN 477 Nr. 6
AGW	5000 ppm
Relative Dichte bezogen auf	
trockene Luft (15°C, 1bar)	1,528
Konformitätserklärung	online verfügbar im Linde-Kundenportal unter
	www.linde-gas.de/direkt

m³ Gas	l flüssig	kg	
(15°C, 1bar)	bei T _s		
1	1,569	1,848	
0,637	1	1,178	
0,541	0,849	1	

Kohlenmonoxid CO

Produktspezifische Informationen

	Reinheit	Nebenbesta	ndteile	Lieferarten	Rauminhalt	Fülldruck	Füllmenge
	%	ppm		Liter	ca. bar	m^3	
Kohlenmonoxid 2.0	≥ 99	N ₂	≤ 4000	Aluminiumflasche	2	100	0,203
		KW	≤ 500	Aluminiumflasche	10	200	1,95
		H ₂	≤ 1500	Aluminiumflasche	40	200	7,78
		$O_2 + Ar$	≤ 3000	Flaschenbündel	480	200	93,4
Kohlenmonoxid 3.0	≥ 99,9	H ₂ O	≤ 10	Aluminiumflasche	10	150	1,5
		$\overline{N_2}$	≤ 750	Aluminiumflasche	40	200	7,78
		KW	≤ 50				
		H ₂	≤ 250				
		$O_2 + Ar$	≤ 60				
Kohlenmonoxid 3.7	≥ 99,97	H ₂ O	≤ 10	HiQ® MINICAN	1	12	0,012
		02	≤ 10	Aluminiumflasche	10	150	1,5
		N ₂	≤ 300	Aluminiumflasche	40	200	7,78
		KW	≤ 10	Flaschenbündel	480	200	93,4
		H ₂	≤ 100				
		Ar	≤ 20				
Kohlenmonoxid 4.7	≥ 99,997	H ₂ O	≤ 5	Aluminiumflasche	2	100	0,203
		02	≤ 5	Aluminiumflasche	10	200	1,95
		$\overline{N_2}$	≤ 10	Aluminiumflasche	40	200	7,78
		KW	≤ 2	Flaschenbündel	480	200	93,4
		H ₂	≤ 1				
		Ar	≤ 15				

Allgemeine Informationen

CAS	630-08-0
UN	1016
Eigenschaften	giftig, hochentzündlich, verdichtetes Gas, fortpflanzungsgefährdend (Kat. 1)
Gefahrensymbole	
Flaschenschulter	
Ventilanschluss	1 LH nach DIN 477 Nr. 5
AGW	30 ppm
Relative Dichte bezogen auf	
trockene Luft (15°C, 1bar)	0,967
Konformitätserklärung	online verfügbar im Linde-Kundenportal unter

m³ Gas (15°C, 1bar)	l flüssig bei T₅	kg
1	1,484	
0,674	1	0,789
0.855	1.268	

Krypton Kr

Produktspezifische Informationen

	Reinheit %	Nebenbestandteile ppm		Lieferarten	Rauminhalt Liter	Fülldruck ca. bar	Füllmenge Liter
ISOKRYPT® 3.0	≥ 99,9	H ₂ 0 ≤	10	Stahlflasche	10	140	2000
			60	Stahlflasche	50	140	10000
		KW ≤	30				
Krypton 4.0	≥ 99,99	H ₂ 0	≤ 5	HiQ [®] MINICAN	1	12	12
		0 ₂	10	Stahlflasche	2	80	200
		N ₂	30	Stahlflasche	10	80	1000
			≤ 5	Stahlflasche	10	140	2000
				Stahlflasche	50	140	10000
Krypton 5.0	≥ 99,999	H ₂ 0	≤ 2	Stahlflasche	2	80	200
			0,5	Stahlflasche	10	80	1000
		$\overline{N_2}$	≤ 2	Stahlflasche	10	140	2000
		KW ≤	0,5	Stahlflasche	50	140	10000
		CF ₄	≤ 1				
		$\overline{H_2}$	≤ 1				
			≤ 1				
		Ar	≤ 1				
		$\frac{1}{10000000000000000000000000000000000$	≤ 1				

Allgemeine Informationen

CAS	7439-90-9			
UN	1056			
Eigenschaften	verdichtetes Gas, erstickend, chemisch inert			
Gefahrensymbole	<u> </u>			
Flaschenschulter				
Ventilanschluss	W 21,80 x 1/14 nach DIN 477 Nr. 6			
AGW	- -			
Relative Dichte bezogen auf				
trockene Luft (15 °C, 1 bar)	2,9			
Konformitätserklärung	online verfügbar im Linde-Kundenportal unter			
	www.linde-gas.de/direkt			

m³ Gas	l flüssig	kg
(15°C, 1bar)	bei T _s	
1	1,453	3,507
0,688	1	2,413
0,285	0,414	1

Methan CH₄

Produktspezifische Informationen

	Reinheit	Nebenbestand	teile	Lieferarten	Rauminhalt	Fülldruck	Füllmenge
	0/0	ppm			Liter	ca. bar	m^3
Methan 2.5	≥ 99,5	H ₂ O	≤ 20	Stahlflasche	10	200	2,51
		$\overline{O_2}$	≤ 100	Stahlflasche	50	200	12,6
		$\overline{N_2}$	≤ 600	Flaschenbündel	600	200	151
		H ₂	≤ 500				
		sonstige KW	≤ 3000				
Methan 3.5	≥ 99,95	H ₂ O	≤ 10	HiQ [®] MINICAN	1	12	0,012
		$\overline{O_2}$	≤ 30	Stahlflasche	2	100	0,243
		$\overline{N_2}$	≤ 200	Stahlflasche	10	200	2,51
		H ₂	≤ 20	Stahlflasche	50	200	12,6
		sonstige KW	≤ 300	Flaschenbündel	600	200	151
Methan 4.5	≥ 99,995	H ₂ O	≤ 5	HiQ [®] MAXICAN	1,2	40	0,048
		02	≤ 5	Stahlflasche	2	100	0,243
		$\overline{N_2}$	≤ 20	Stahlflasche	10	200	2,51
		H ₂	≤ 5	Stahlflasche	50	200	12,6
		sonstige KW	≤ 20	Flaschenbündel	600	200	151
Methan 5.5	≥ 99,9995	H ₂ O	≤ 2	Stahlflasche	2	100	0,243
		$\overline{O_2}$	≤ 0,5	Stahlflasche	10	200	2,51
		$\overline{N_2}$	≤ 4	Stahlflasche	50	200	12,6
		H ₂	≤ 0,1	Flaschenbündel	600	200	151
		sonstige KW	≤ 1				

Allgemeine Informationen

CAS	74-82-8			
UN	1971			
Eigenschaften	hochentzündlich, verdichtetes Gas			
Gefahrensymbole	<u></u> ♠♦			
Flaschenschulter				
Ventilanschluss	W 21,80 x 1/14 LH nach DIN 477 Nr. 1			
AGW	-			
Relative Dichte bezogen auf				
trockene Luft (15 °C, 1 bar)	0,555			
Konformitätserklärung	online verfügbar im Linde-Kundenportal unter			
	www.linde-gas.de/direkt			

m³ Gas	l flüssig	kg
(15°C, 1bar)	bei T _s	
1	1,588	0,671
0,63	1	0,423
1,49	2,366	1

Methylamin CH₅N

Produktspezifische Informationen

	Reinheit	Nebenbestandteile		Lieferarten	Rauminhalt	Dampfdruck	Füllmenge
	0/0	ppm			Liter	bar (bei 20°C)	kg
Methylamin 2.0	≥99	andere Amine	≤ 1	Stahlflasche	2	3	1

Allgemeine Informationen

CAS	74-89-5
UN	1061
Eigenschaften	hochentzündlich, unter Druck verflüssigtes Gas, gesundheitsschädlich
Gefahrensymbole	
Flaschenschulter	
Ventilanschluss	W 21,80 x 1/14 LH nach DIN 477 Nr. 1
AGW	10 ppm
Relative Dichte bezogen auf	
trockene Luft (15°C, 1bar)	1,099
Konformitätserklärung	online verfügbar im Linde-Kundenportal unter www.linde-gas.de/direkt

m³ Gas (15°C, 1bar)	l flüssig bei T,	kg
1	1,915	1,329
0,522	1	0,694
0,752	1,441	1

Neon Ne

Produktspezifische Informationen

	Reinheit %	Nebenbestandteile ppm	Lieferarten	Rauminhalt Liter	Fülldruck ca. bar	Füllmenge m³
Neon 4.5	≥ 99,995	H ₂ 0 ≤ 3	B HiQ [®] MINICAN	1	12	0,012
		0 ₂ ≤ 2	Stahlflasche	10	100	0,963
		N ₂ ≤ !	Stahlflasche	50	200	9,2
		KW ≤ 0,2	2			
		He ≤ 20)			
Neon 5.0	≥ 99,999	H ₂ O ≤ 2	2 Stahlflasche	2	100	0,193
		0 ₂ ≤	1 Stahlflasche	10	100	0,963
		$\overline{N_2} \leq 2$	2 Stahlflasche	50	200	9,2
		KW ≤ 0,	1 Flaschenbündel	600	200	110
		He ≤!	5			

Allgemeine Informationen

CAS	7440-01-9
UN	1065
Eigenschaften	verdichtetes Gas, erstickend, chemisch inert
Gefahrensymbole	\Leftrightarrow
Flaschenschulter	
Ventilanschluss	W 21,80 x 1/14 nach DIN 477 Nr. 6
AGW	-
Relative Dichte bezogen auf	
trockene Luft (15°C, 1bar)	0,696
Konformitätserklärung	online verfügbar im Linde-Kundenportal unter
	www.linde-gas.de/direkt

m³ Gas (15°C, 1 bar)	l flüssig bei T _s	kg	
1	0,698	0,842	
1,432		1,206	
1,188	0,829		

Octafluorcyclobutan C₄F₈

Produktspezifische Informationen

	Reinheit %	Nebenbestandteil ppm	le	Lieferarten	Rauminhalt Liter	Dampfdruck bar (bei 20°C)	Füllmenge kg
Octafluorcyclobutan 4.8	≥ 99,998	H_20	≤ 2	Stahlflasche	2	2,7	2
		CO	≤ 1	Stahlflasche	10	2,7	10
		$O_2 + N_2$	≤ 10	Stahlflasche	50	2,7	50
		$\overline{CO_2}$	≤ 5				
		andere hal. KW	≤ 5				
		Säure ≤	1 (w/w)				

Allgemeine Informationen

CAS	115-25-3
UN	1976
Eigenschaften	unter Druck verflüssigtes Gas, erstickend
Gefahrensymbole	<i> ♦</i>
Flaschenschulter	
Ventilanschluss	W 21,80 x 1/14 nach DIN 477 Nr. 6
AGW	-
Relative Dichte bezogen auf	
trockene Luft (15°C, 1bar)	7,33
Konformitätserklärung	online verfügbar im Linde-Kundenportal unter
-	www.linde-gas.de/direkt

m³ Gas	l flüssig	kg	
(15°C, 1 bar)	bei T _s		
1	5,42	8,87	
0,18	1	1,637	
0,11	0,61	1	

Octafluorpropan C₃F₈

Produktspezifische Informationen

	Reinheit %	Nebenbestandt ppm	eile	Lieferarten	Rauminhalt Liter	Dampfdruck bar (bei 20°C)	Füllmenge kg
Octafluorpropan 4.0	≥ 99,99	H ₂ 0	≤ 5	Stahlflasche	2	7,7	2
		$\overline{O_2 + N_2}$	≤ 50	Stahlflasche	10	7,7	10
		andere hal. KW	≤ 50	Stahlflasche	50	7,7	50
		Säure	≤1 (w/w)				

Allgemeine Informationen

CAS	76-19-7
UN	2424
Eigenschaften	unter Druck verflüssigtes Gas, erstickend
Gefahrensymbole	$\overline{\diamondsuit}$
Flaschenschulter	
Ventilanschluss	W 21,80 x 1/14 nach DIN 477 Nr. 6
AGW	<u> </u>
Relative Dichte bezogen auf	
trockene Luft (15°C, 1bar)	6,61
Konformitätserklärung	online verfügbar im Linde-Kundenportal unter
	www.linde-gas.de/direkt

m³ Gas (15°C, 1bar)	l flüssig bei T _s	kg	
1	4,99	7,99	
0,2		1,601	
0,13	0,62		

Octafluortetrahydrofuran C₄F₈O

Produktspezifische Informationen

	Reinheit %	Nebenbestandteile ppm	Lieferarten	Rauminhalt Liter	Dampfdruck bar (bei 20°C)	Füllmenge kg
Octafluortetrahydrofuran 2.5	≥99,5	H_2O $\leq 10 \text{ (w/w)}$ Säure $\leq 0,1 \text{ (w/w)}$ $O_2 + N_2 + CO + CO_2 \leq 40C$			2,12	

Allgemeine Informationen

CAS	773-14-8
UN	3163
Eigenschaften	unter Druck verflüssigtes Gas, erstickend
Gefahrensymbole	<i>♦</i>
Flaschenschulter	
Ventilanschluss	W 21,80 x 1/14 nach DIN 477 Nr. 6
AGW	- -
Relative Dichte bezogen auf	
trockene Luft (15°C, 1bar)	8,09
Konformitätserklärung	online verfügbar im Linde-Kundenportal unter www.linde-gas.de/direkt

m³ Gas	l flüssig	kg
(15°C, 1bar)	bei T _s	
1	6,014	9,79
0,166	1	1,628
0,102	0,614	1

Phosphin PH₃

Produktspezifische Informationen

	Reinheit %	Nebenbestandteile ppm		Lieferarten	Rauminhalt Liter	Dampfdruck bar (bei 20°C)	Füllmenge kg
Phosphin 5.0	≥ 99,999	H ₂ 0	≤ 1	Aluminiumflasche	2	34,6	0,3
		$\overline{O_2}$	≤ 1	Aluminiumflasche	10	34,6	1
		$\overline{N_2}$	≤ 3				
		CO	≤ 1				
		KW	≤ 2				
		CO ₂	≤ 1				
		AsH ₃	≤ 2				

Allgemeine Informationen

CAS	7803-51-2
UN	2199
Eigenschaften	sehr giftig, hochentzündlich, selbstentzündlich an der Luft, unter Druck verflüssigtes Gas, ätzend, umweltgefährlich
Gefahrensymbole	
Flaschenschulter	
Ventilanschluss	W 21,80 x 1/14 nach DIN 477 Nr. 6
AGW	0,1 ppm
Relative Dichte bezogen auf	
trockene Luft (15°C, 1bar)	1,18
Konformitätserklärung	online verfügbar im Linde-Kundenportal unter www.linde-gas.de/direkt

m³ Gas (15°C, 1 bar)	l flüssig bei T _s	kg	
1	1,935	1,432	
0,517		0,74	
0,698	1,351	<u> </u>	

Propan C₃H₈

Produktspezifische Informationen

	Reinheit %	Nebenbestand ppm	teile	Lieferarten	Rauminhalt Liter	Dampfdruck bar (bei 20°C)	Füllmenge kg
Propan 2.5	≥ 99,5	H ₂ 0	≤ 50	Stahlflasche	2	8,53	0,8
		sonstige KW	≤ 5000	Stahlflasche	7	8,53	3
				Stahlflasche	27	8,53	11
				Stahlflasche	79	8,53	33
				Stahlfass	950	8,53	400
Propan 3.5	≥ 99,95	H ₂ 0	≤ 10	Stahlflasche	2	8,53	0,8
		sonstige KW	≤ 500	Stahlflasche	7	8,53	3
				Stahlflasche	27	8,53	11
				Stahlflasche	79	8,53	33

Allgemeine Informationen

CAS	74-98-6
UN	1978
Eigenschaften	unter Druck verflüssigtes Gas, hochentzündlich
Gefahrensymbole	**
Flaschenschulter	
Ventilanschluss	W 21,80 x 1/14 LH nach DIN 477 Nr. 1
AGW	1000 ppm
Relative Dichte bezogen auf	
trockene Luft (15°C, 1bar)	1,547
Konformitätserklärung	online verfügbar im Linde-Kundenportal unter
	www.linde-gas.de/direkt

m³ Gas	l flüssig	kg
(15°C, 1bar)	bei T _s	
1	3,215	1,871
0,311	1	0,582
0,534	1,718	1
	1	

Propen C₃H₆

Produktspezifische Informationen

	Reinheit %	Nebenbestandt ppm	eile	Lieferarten	Rauminhalt Liter	Dampfdruck bar (bei 20°C)	Füllmenge kg
Propen 2.5	≥ 99,5	sonstige KW	≤ 5000	Stahlflasche	2	10,43	0,8
				Stahlflasche	7	10,43	3
				Stahlflasche	27	10,43	11
				Stahlflasche	79	10,43	33
Propen 3.5	≥ 99,95	sonstige KW	≤ 500	Stahlflasche	79	10,43	33

Allgemeine Informationen

CAS	115-07-1
UN	1077
Eigenschaften	unter Druck verflüssigtes Gas, hochentzündlich
Gefahrensymbole	<u></u>
Flaschenschulter	
Ventilanschluss	W 21,80 x 1/14 LH nach DIN 477 Nr. 1
AGW	1000 ppm
Relative Dichte bezogen auf	
trockene Luft (15°C, 1bar)	1,476
Konformitätserklärung	online verfügbar im Linde-Kundenportal unter www.linde-gas.de/direkt

m³ Gas (15°C, 1 bar)	l flüssig bei T _s	kg	
1	2,908	1,785	
0,344	<u>1</u>	0,614	
0,56	1,629		

Sauerstoff O₂

	Reinheit	Nebenbestandte	eile	Lieferarten	Rauminhalt	Fülldruck	Füllmenge
	0/0	ppm			Liter	ca. bar	m³
Sauerstoff	≥ 99,5			Stahlflasche	10	200	2,1
				Stahlflasche	20	200	4,21
				Stahlflasche	50	200	10,5
				Stahlflasche	50	300	15,1
				Flaschenbündel	600	200	126
				Flaschenbündel	600	300	181
Atemsauerstoff	≥ 99,5	H_20	≤6,6	Stahlflasche	50	200	10,5
		CH ₄	≤30	Flaschenbündel	600	200	126
		CO ₂	≤ 10				
		$\overline{C_2H_2}$	≤ 0,1				
		C_2H_4	≤0,4				
		$\overline{N_20}$	≤ 2				
		halogenierte	≤ 0,2				
		Lösungsmittel					
		halogenierte	≤ 2				
		Kältemittel					
		C ₂ H ₆ und	≤ 6				
		höhere KW					
auerstoff KW-frei	≥ 99,6	H ₂ 0	≤ 5	Stahlflasche	10	200	2,1
		KW	≤ 0,1	Stahlflasche	50	200	10,5
		CO ₂	≤ 1	Flaschenbündel	600	200	126
		$N_2 + Ar$	≤ 4000				
Sauerstoff 3.5	≥ 99,95			Stahlflasche	50	200	10,5
				Stahlflasche	50	300	15,1
				Flaschenbündel	600	200	126
				Flaschenbündel	600	300	181
Sauerstoff 4.5	≥ 99,995	H ₂ 0	≤ 5	HiQ [®] MINICAN	1	12	0,012
		$\overline{N_2}$	≤ 20	Stahlflasche	10	200	2,1
		KW	≤ 0,5	Stahlflasche	50	200	10,5
		$\overline{CO_2}$	≤ 0,5	Flaschenbündel	600	200	126
		Ar	≤ 10	Flaschenbündel	600	300	181
Sauerstoff 5.0	≥ 99,999	H ₂ 0	≤ 3	HiQ [®] MAXICAN	1,2	40	0,048
	,	$\overline{N_2}$	≤ 5	Stahlflasche	<u> </u>	200	0,21
		KW	≤ 0,2	Stahlflasche	2	200	0,421
		CO ₂	≤ 0,2	Stahlflasche	10	200	2,1
		Ar	≤ 2	Stahlflasche	50	200	10,5
				Stahlflasche	50	300	15,1
				Flaschenbündel	600	200	126
				Flaschenbündel	600	300	181
auerstoff 6.0	≥ 99,9999	H ₂ 0	≤ 0,5	Stahlflasche	10	200	2,1
	- ,,,,,,	$\frac{N_2}{N_2}$	= 0,5 ≤ 0,5	Stahlflasche	50	200	10,5
		CO	≤ 0,1	Flaschenbündel	600	200	126
		KW	≤ 0,1	1 idocirciio dilaci	000	200	120
		$\frac{KVV}{CO_2}$	≤ 0,1				
		CO_2	= U, I				

Sauerstoff O₂

Allgemeine Informationen

CAS	7782-44-7
UN	1072
Eigenschaften	brandfördernd, verdichtetes Gas
Gefahrensymbole	
Flaschenschulter	
Ventilanschluss	G 3/4 nach DIN 477 Nr. 9
AGW	-
Relative Dichte bezogen auf	
trockene Luft (15°C, 1bar)	1,105
Konformitätserklärung	online verfügbar im Linde-Kundenportal unter www.linde-gas.de/direkt

m³ Gas (15°C, 1bar)	l flüssig bei Ts	kg	
1	1,172	1,337	
0,853	1	1,141	
0,748	0,876		

Schwefeldioxid SO₂

Produktspezifische Informationen

	Reinheit %	Nebenbestandteile ppm	Lieferarten	Rauminhalt Liter	Dampfdruck bar (bei 20°C)	Füllmenge kg
Schwefeldioxid 3.8	≥ 99,98	H ₂ 0 ≤ 5	0 Stahlflasche	2	3,26	2
			Stahlflasche	10	3,26	12
			Stahlflasche	50	3,26	61
			Stahlfass	450	3,26	550

Allgemeine Informationen

CAS	7446-09-5
UN	1079
Eigenschaften	unter Druck verflüssigtes Gas, ätzend, giftig
Gefahrensymbole	
Flaschenschulter	
Ventilanschluss	G 5/8 nach DIN 477 Nr. 7
AGW	2 ppm
Relative Dichte bezogen auf	
trockene Luft (15°C, 1bar)	2,253
Konformitätserklärung	online verfügbar im Linde-Kundenportal unter www.linde-gas.de/direkt

m³ Gas	l flüssig	kg	
(15°C, 1 bar)	bei T _s		
1	1,869	2,725	
0,535	1	1,458	
0,367	0,686	1	

Schwefelhexafluorid SF₆

Produktspezifische Informationen

	Reinheit %	Nebenbest ppm	tandteile	Lieferarten	Rauminhalt Liter	Dampfdruck bar (bei 20°C)	Füllmenge kg
Schwefelhexafluorid 3.0	≥ 99,9	H_2O	$\leq 5 (w/w)$	Stahlflasche	10	21,0	10,4
		CF ₄	$\leq 500 (w/w)$	Stahlflasche	50	21,0	52
		Säure	≤0,3 (w/w)				
		Luft-	\leq 500 (w/w)				
		bestandtei	le				
		hydro-	$\leq 1 (W/W)$				
		lisierbare					
		Fluoride					
Schwefelhexafluorid 4.5	≥99,995	H_2O	≤ 5	Stahlflasche	2	21,0	2
		$O_2 + N_2$	≤ 10	Stahlflasche	10	21,0	10
		CF ₄	≤ 40	Stahlflasche	50	21,0	50
		Säure	$\leq 0.5 (w/w)$				
Schwefelhexafluorid 5.0	≥99,999	H_2O	≤ 1	Aluminiumflasche	2	21,0	2
		$O_2 + N_2$	≤ 5	Aluminiumflasche	10	21,0	10
		CF ₄	≤ 5	Aluminiumflasche	40	21,0	30
		Säure	$\leq 0.1 (w/w)$	Stahlflasche	50	21,0	50

Allgemeine Informationen

CAS	2551-62-4
UN	1080
Eigenschaften	unter Druck verflüssigtes Gas, erstickend
Gefahrensymbole	\Leftrightarrow
Flaschenschulter	
Ventilanschluss	W 21,80 x 1/14 nach DIN 477 Nr. 6
AGW	1000 ppm
Relative Dichte bezogen auf	
trockene Luft (15°C, 1bar)	5,106
Konformitätserklärung	online verfügbar im Linde-Kundenportal unter

m³ Gas (15°C, 1bar)	l flüssig bei T₅	kg	
1	3,234	6,176	_
0,309		1,91	
0.162	0.524		

Schwefelwasserstoff H₂S

Produktspezifische Informationen

	Reinheit %	Nebenbestandteile ppm	Lieferarten	Rauminhalt Liter	Dampfdruck bar (bei 20°C)	Füllmenge kg
Schwefelwasserstoff 2.5	≥ 99,5		Stahlflasche	2	17,9	1,3
			Stahlflasche	10	17,9	6,7
			Stahlflasche	50	17,9	33,5

Allgemeine Informationen

CAS	7783-06-4
UN	1053
Eigenschaften	sehr giftig, hochentzündlich, umweltgefährlich, unter Druck verflüssigtes Gas
Gefahrensymbole	
Flaschenschulter	
Ventilanschluss	1 LH nach DIN 477 Nr. 5
AGW	10 ppm
Relative Dichte bezogen auf	
trockene Luft (15°C, 1bar)	1,187
Konformitätserklärung	online verfügbar im Linde-Kundenportal unter
	www.linde-gas.de/direkt

m³ Gas (15°C, 1 bar)	l flüssig bei T₅	kg
1	1,567	1,434
0,638	1	0,915
0,697	1,093	<u> </u>

Silan SiH₄

Produktspezifische Informationen

	Reinheit %	Nebenbestandte ppm	ile	Lieferarten	Rauminhalt Liter	Fülldruck ca. bar	Füllmenge kg
Silan 4.0	≥ 99,99	H ₂ O	≤ 2	Stahlflasche	50	100	14
		02	≤ 1				
		N_2	≤ 20				
		KW	≤ 5				
		H_2	≤ 200				
		CO + CO ₂	≤ 5				
		Chlorsilane	≤ 2				
Silan 5.0	≥ 99,999	H ₂ O	≤ 1	Stahlflasche	2	48	0,2
		02	≤ 1	Stahlflasche	10	48	1
		$\overline{N_2}$	≤ 3	Stahlflasche	50	48	5
		KW	≤ 0,5	Stahlflasche	50	100	14
		H ₂	≤ 50	Flaschenbündel	600	100	168
		CO + CO ₂	≤ 1				
		Chlorsilane	≤ 0,5				

Allgemeine Informationen

CAS	7803-62-5
UN	2203
Eigenschaften	selbstentzündlich an der Luft, hochentzündlich, verdichtetes Gas
Gefahrensymbole	*
Flaschenschulter	
Ventilanschluss	W 21,80 x 1/14 LH nach DIN 477 Nr. 1
AGW	5 ppm (TLV)
Relative Dichte bezogen auf	
trockene Luft (15°C, 1bar)	1,12
Konformitätserklärung	online verfügbar im Linde-Kundenportal unter www.linde-gas.de/direkt

m³ Gas (15°C, 1bar)	l flüssig bei T,	kg
1	2,428	1,35
0,412	1	0,556
0,741	1,799	1

Siliciumtetrafluorid SiF₄

Produktspezifische Informationen

	Reinheit %	Nebenbestandteile ppm	Lieferarten	Rauminhalt Liter	Fülldruck ca. bar	Füllmenge kg
Siliciumtetrafluorid 4.8	≥ 99,998	0 ₂	3 Stahlflasche	2	18	0,2
		N ₂	3 Stahlflasche	10	18	1
		<u>CO</u> <u>≤</u>	3			
		CH ₄ ≤	10			
		CO ₂ ≤	3			

Allgemeine Informationen

CAS	7783-61-1		
UN	1859		
Eigenschaften	giftig, ätzend, verdichtetes Gas		
Gefahrensymbole			
Flaschenschulter			
Ventilanschluss	1 nach DIN 477 Nr. 8		
AGW	3 ppm		
Relative Dichte bezogen auf			
trockene Luft (15°C, 1bar)	3,626		
Konformitätserklärung	online verfügbar im Linde-Kundenportal unter		
_	www.linde-gas.de/direkt		

m³ Gas (15°C, 1bar)	l flüssig bei T _s	kg
1	2,643	4,388
0,378	1	1,66
0,228	0,602	1

Stickstoff N₂

Produktspezifische Informationen

	Reinheit	Nebenbestandteile	Lieferarten	Rauminhalt	Fülldruck	Füllmenge
	0/0	ppm		Liter	ca. bar	m ³
Stickstoff	≥99,8		Stahlflasche	10	200	1,91
			Stahlflasche	20	200	3,81
			Stahlflasche	50	300	13,2
			Stahlflasche	50	200	9,53
			Flaschenbündel	600	200	114
			Flaschenbündel	600	300	158
VERISEQ® GAN Pharma	≥ 99,999	<u>0</u> ₂ ≤		50	200	9,53
Stickstoff für die		$H_20 \leq$		600	200	114
oharmazeutische Industrie		<u>CO</u> ≤				
		<u>CO</u> ₂ ≤				
		<u>Ar</u> ≤ 500				
		Geruch kei				
Stickstoff 5.0	≥ 99,999	$H_20 \leq$	_ '	0,2	200	0,04
		<u>0</u> ₂ ≤		1	12	0,012
		KW ≤ 0,		1,2	40	0,048
			ECOCYL®	1	150	0,15
			Stahlflasche	2	200	0,381
			Stahlflasche	10	200	1,91
			Stahlflasche	20	200	3,81
			Stahlflasche	50	200	9,53
			Stahlflasche	50	300	13,2
			Flaschenbündel	600	200	114
			Flaschenbündel	600	300	158
Stickstoff 5.3	≥ 99,9993	H ₂ 0 ≤	2 Stahlflasche	1	200	0,191
		0 ₂ ≤	2 Stahlflasche	2	200	0,381
		KW ≤ 0,	1 Stahlflasche	10	200	1,91
			Stahlflasche	50	200	9,53
			Stahlflasche	50	300	13,2
			Flaschenbündel	600	200	114
Stickstoff 5.5 ECD	≥ 99,9995	H ₂ 0 ≤	1 Stahlflasche	50	200	9,53
			1			
		CO ≤ 0,	5			
		KW ≤ 0,				
		$CO_2 \leq 0$	5			
		hal. KW ≤ 0,00				
Stickstoff 6.0	≥ 99,9999	$H_2O \leq 0$		2	200	0,381
		$O_2 \leq O$		10	200	1,91
		CO ≤ 0,		50	200	9,53
		KW ≤ 0,		600	200	114
		$CO_2 \leq 0$				
		$\frac{e^{5/2}}{H_2} \leq 0$,				

Produktspezifische Informationen

	Reinheit %	Nebenbesta ppm	ndteile	Lieferarten	Rauminhalt Liter	Fülldruck ca. bar	Füllmenge m³
Stickstoff 7.0	≥ 99,99999	H ₂ O	≤ 0,05	Aluminiumflasche	10	150	1,48
		$\overline{O_2}$	≤ 0,03	Aluminiumflasche	40	150	5,9
		CO	≤ 0,03				
		KW	≤ 0,03				
		CO ₂	≤ 0,03				
		$\overline{H_{2}}$	≤ 0,03				
		hal. KW	≤ 0,001				

Allgemeine Informationen

CAS	7727-37-9
UN	1066
Eigenschaften	verdichtetes Gas, erstickend, chemisch inert
Gefahrensymbole	\Leftrightarrow
Flaschenschulter	
	Fülldruck 200 bar: W 24,32 x 1/14
	nach DIN 477 Nr. 10
	Fülldruck 300 bar (Bündel): W 30 x 2
	nach DIN 477-5 Nr. 54
AGW	-
Relative Dichte bezogen auf	
trockene Luft (15°C, 1bar)	0,967
Konformitätserklärung	online verfügbar im Linde-Kundenportal unter
3	www.linde-gas.de/direkt

m³ Gas (15°C, 1bar)	l flüssig bei T _s	kg	
1	1,447		_
0,691		0,809	
0,855	1,237	1	

Stickstoffdioxid NO₂ Distickstofftetroxid N₂O₄

Produktspezifische Informationen

	Reinheit	Nebenb	estandteile	Lieferarten	Rauminhalt	Dampfdruck	Füllmenge
	0/0	ppm			Liter	bar (bei 20°C)	kg
Stickstoffdioxid 2.0	≥99	H ₂ O	$\leq 3000 (w/w)$	Stahlflasche	10	1	12

Allgemeine Informationen

CAS	10102-44-0
UN	1067
Eigenschaften	sehr giftig, ätzend, unter Druck verflüssigtes Gas
Gefahrensymbole	
Flaschenschulter	
Ventilanschluss	1 nach DIN 477 Nr. 8
AGW	5 ppm
Relative Dichte bezogen auf	
trockene Luft (15°C, 1bar)	2,62
Konformitätserklärung	online verfügbar im Linde-Kundenportal unter www.linde-gas.de/direkt

m³ Gas (15°C, 1bar)	l flüssig bei T _s	kg	
1	2,327	3,358	_
0,43	1	1,443	_
0,298	0,693	1	_

Stickstoffmonoxid NO

Produktspezifische Informationen

	Reinheit %	Nebenbestandteile ppm	Lieferarten	Rauminhalt Liter	Fülldruck ca. bar	Füllmenge m³
Stickstoffmonoxid 2.5	≥ 99,5		Stahlflasche	2	30	0,076
			Stahlflasche	10	33	0,435
			Stahlflasche	50	33	2,17

Allgemeine Informationen

CAS	10102-43-9
UN	1660
Eigenschaften	sehr giftig, brandfördernd, ätzend, verdichtetes
	Gas
Gefahrensymbole	
Flaschenschulter	
Ventilanschluss	1 nach DIN 477 Nr. 8
AGW	25 ppm
Relative Dichte bezogen auf	
trockene Luft (15 °C, 1 bar)	1,034
Konformitätserklärung	online verfügbar im Linde-Kundenportal unter
	www.linde-gas.de/direkt

n³ Gas	l flüssig	kg
(15°C, 1bar)	bei T _s	
1	0,962	1,25
1,04	1	1,3
),8	0,769	1

Stickstofftrifluorid NF₃

Produktspezifische Informationen

	Reinheit %	Nebenbestandteile ppm	Lieferarten	Rauminhalt Liter	Fülldruck ca. bar	Füllmenge kg
Stickstofftrifluorid 4.0	≥99,99	H ₂ 0 ≤ 1	Stahlflasche	2	41	0,3
		O ₂ ≤ 5	Stahlflasche	10	41	1,5
		N ₂ ≤ 50	Stahlflasche	50	97	22,7
		SF ₆ ≤ 10				
		<u>CO</u> ₂ ≤ 15				
		CF ₄ ≤ 50				
		$N_20 \leq 10$				
Stickstofftrifluorid 4.5	≥ 99,995	$H_2O \leq 0.5$	Stahlflasche	50	97	22,7
		<u>0</u> ₂ ≤3				
		$N_2 \leq 3$				
		<u>CO</u> ≤ 0,5				
		SF ₆ ≤ 1				
		<u>CO</u> ₂ ≤ 1				
		<u>CF₄</u> ≤ 20				
		<u>HF</u> ≤1				
		N ₂ 0 ≤ 1				

Allgemeine Informationen

CAS	7783-54-2
UN	2451
Eigenschaften	brandfördernd, verdichtetes Gas
Gefahrensymbole	
Flaschenschulter	
Ventilanschluss	1 nach DIN 477 Nr. 8
AGW	10 ppm
Relative Dichte bezogen auf	
trockene Luft (15°C, 1bar)	2,446
Konformitätserklärung	online verfügbar im Linde-Kundenportal unter

m³ Gas (15°C, 1 bar)	l flüssig bei T₅	kg	
1	1,922	2,96	
0,52	1	1,54	
0.338	0.649		

Tetrafluormethan CF₄

Produktspezifische Informationen

	Reinheit %	Nebenbestand ppm	teile	Lieferarten	Rauminhalt Liter	Fülldruck ca. bar	Füllmenge kg
Tetrafluormethan 2.8 (R 14)	≥ 99,8			Stahlflasche	2	110	1,2
				Stahlflasche	10	110	6
				Flaschenbündel	600	130	432
Tetrafluormethan 3.5	≥ 99.95	H ₂ 0	≤ 5	Stahlflasche	2	110	1,2
		$\overline{O_2 + N_2}$	≤ 400	Stahlflasche	10	110	6
		$\overline{\text{CO + CO}_2}$	≤ 10	Stahlflasche	50	130	36
		andere hal. KW	≤ 100				
		Säure	≤1 (w/w)				
Tetrafluormethan 4.5	≥ 99,995	H ₂ 0	≤ 5	Stahlflasche	50	130	36
		$\overline{O_2}$	≤ 5				
		$\overline{N_2}$	≤ 20				
		$CO + CO_2$	≤ 5				
		andere hal. KW	≤20				
Tetrafluormethan 5.0	≥ 99,999	H ₂ 0	≤ 1	Aluminiumflasche	2	110	1,2
		CO	≤ 1	Aluminiumflasche	10	110	6
		$O_2 + N_2$	≤ 5	Stahlflasche	50	130	36
		CO ₂	≤ 1				
		andere hal. KW	≤ 5				
		Säure	≤ 0,1 (w/w)				

Allgemeine Informationen

CAS	75-73-0
UN	1982
Eigenschaften	verdichtetes Gas, erstickend
Gefahrensymbole	<u></u>
Flaschenschulter	
Ventilanschluss	W 21,80 x 1/14 nach DIN 477 Nr. 6
AGW	-
Relative Dichte bezogen auf	
trockene Luft (15°C, 1bar)	3,05
Konformitätserklärung	online verfügbar im Linde-Kundenportal unter
	www.linde-gas.de/direkt

m³ Gas	l flüssig	kg
(15°C, 1bar)	bei Ts	
1	2,303	3,692
0,434	1	1,603
0,271	0,624	1

Trifluormethan CHF₃

Produktspezifische Informationen

	Reinheit %	Nebenbestandte ppm	ile	Lieferarten	Rauminhalt Liter	Dampfdruck bar (bei 20°C)	Füllmenge kg
Trifluormethan 2.8 (R 23)	≥99,8			Stahlflasche	2	41,6	1,5
Trifluormethan 4.8	≥ 99,998	H ₂ O	≤ 1	Stahlflasche	10	41,6	8
		CO	≤ 1	Stahlflasche	50	41,6	40
		$O_2 + N_2$	≤ 5				
		$\overline{CO_2}$	≤ 10				
		andere hal. KW	≤ 5				
		Säure ≤	0,1 (w/w)				
Trifluormethan 5.0	≥ 99,999	H ₂ O	≤ 1	Aluminiumflasche	2	41,6	1,5
		CO	≤ 1	Aluminiumflasche	10	41,6	8
		$O_2 + N_2$	≤ 3	Aluminiumflasche	40	41,6	30
		$\overline{CO_2}$	≤ 3				
		andere hal. KW	≤ 5				
		Säure ≤	0,1 (w/w)				

Allgemeine Informationen

CAS	75-46-7
UN	1984
Eigenschaften	unter Druck verflüssigtes Gas, erstickend
Gefahrensymbole	<u></u>
Flaschenschulter	
Ventilanschluss	W 21,80 x 1/14 nach DIN 477 Nr. 6
AGW	<u> </u>
Relative Dichte bezogen auf	
trockene Luft (15°C, 1bar)	2,438
Konformitätserklärung	online verfügbar im Linde-Kundenportal unter
	www.linde-gas.de/direkt

m³ Gas (15°C, 1bar)	l flüssig bei T₅	kg	
1	2,049	2,949	
0,488	<u>1</u>	1,439	
0.339	0.695		

Trimethylamin C₃H₉N

Produktspezifische Informationen

	Reinheit %	Nebenbestandteile ppm	Lieferarten	Rauminhalt Liter	Dampfdruck bar (bei 20°C)	Füllmenge kg
Trimethylamin 2.0	≥99		Stahlflasche	2	1,86	1
			Stahlflasche	10	1,86	5,6

Allgemeine Informationen

CAS	75-50-3
UN	1083
Eigenschaften	gesundheitsschädlich, reizend,
	unter Druck verflüssigtes Gas, hochentzündlich
Gefahrensymbole	
Flaschenschulter	
Ventilanschluss	W 21,80 x 1/14 LH nach DIN 477 Nr. 1
AGW	_
Relative Dichte bezogen auf	
trockene Luft (15°C, 1bar)	2,11
Konformitätserklärung	online verfügbar im Linde-Kundenportal unter
	www.linde-gas.de/direkt

m³ Gas (15°C, 1 bar)	l flüssig bei T,	kg
1	3,906	2,522
0,256	1	0,653
0,392	1,53	1

Wasserstoff H₂

Produktspezifische Informationen

	Reinheit %	Nebenbesta ppm	ndteile	Lieferarten	Rauminhalt Liter	Fülldruck ca. bar	Füllmenge m³
Wasserstoff 3.0	≥99,9	H ₂ 0	≤ 100	Stahlflasche	10	200	1,78
		$\overline{O_2}$	≤ 50	Stahlflasche	50	200	8,89
		$\overline{N_2}$	≤ 500	Flaschenbündel	600	200	107
				Flaschenbündel	600	300	151
Wasserstoff 3.8	≥ 99,98	H ₂ 0	≤ 20	Belieferung gasförmig			
		$\overline{O_2}$	≤ 10	im Trailer			
		$\overline{N_2}$	≤ 200				
Wasserstoff 5.0	≥ 99,999	H ₂ 0	≤ 5	HiQ® MICROCAN	0,2	200	0,04
		$\overline{O_2}$	≤ 2	HiQ® MINICAN	1	12	0,012
		$\overline{N_2}$	≤ 3	HiQ® MAXICAN	1,2	40	0,048
		KW	≤ 0,5	ECOCYL®	_ ₁	150	0,15
				Stahlflasche	10	200	1,78
				Stahlflasche	50	200	8,89
				Flaschenbündel	600	200	107
Wasserstoff 5.3	≥ 99,9993	H ₂ 0	≤ 2	Stahlflasche	1	200	0,178
		$\overline{O_2}$	≤ 1	Stahlflasche	2	200	0,356
		$\overline{N_2}$	≤ 3	Stahlflasche	10	200	1,78
		KW	≤ 0,2	Stahlflasche	50	200	8,89
				Flaschenbündel	600	200	107
Wasserstoff 5.5 ECD	≥ 99,9995	H ₂ 0	≤ 1	Stahlflasche	50	200	8,89
		$\overline{O_2}$	≤ 1				
		CO	≤ 0,5				
		KW	≤ 0,1				
		CO ₂	≤ 0,5				
		hal. KW	≤ 0,001				
Wasserstoff 6.0	≥ 99,9999	H ₂ O	≤ 0,5	Stahlflasche	2	200	0,356
		$\overline{O_2}$	≤ 0,5	Stahlflasche	10	200	1,78
		$\overline{N_2}$	≤ 0,5	Stahlflasche	50	200	8,89
		CO	≤ 0,1	Flaschenbündel	600	200	107
		KW	≤ 0,1				
		CO ₂	≤ 0,1				
Wasserstoff 7.0	≥ 99,99999	H ₂ O	≤ 0,05	Aluminiumflasche	10	150	1,37
		$\overline{O_2}$	≤ 0,03	Aluminiumflasche	40	150	5,49
		CO	≤ 0,03				
		KW	≤ 0,03				
		CO ₂	≤ 0,03				

Allgemeine Informationen

CAS	1333-74-0			
UN	1049			
Eigenschaften	hochentzündlich, verdichtetes Gas			
Gefahrensymbole				
Flaschenschulter				
Ventilanschluss	W 21,80 x 1/14 LH nach DIN 477 Nr. 1			
AGW	_			
Relative Dichte bezogen auf				
trockene Luft (15°C, 1bar)	0,069			
Konformitätserklärung	online verfügbar im Linde-Kundenportal unter			
	www.linde-gas.de/direkt			

m³ Gas	l flüssig	kg	
(15°C, 1 bar)	bei T _s		
1	1,188	0,0841	
0,8418		0,0708	
11,89	14,124	1	

Xenon Xe

Produktspezifische Informationen

	Reinheit %	Nebenbestandteile	Lieferarten	Rauminhalt Liter	Dampfdruck bar (bei 20°C)	Füllmenge Liter
		ppm		Litei	, ,	
Xenon 4.0	≥ 99,99	$H_2O \leq S$	HiQ® MINICAN	1	12*	12
		O ₂ ≤ 10	Stahlflasche	2	58,4	200-400
		N ₂ ≤ 30	Stahlflasche	10	58,4	1000-2000
		KW ≤ 5	Stahlflasche	50	58,4	9000
Xenon 5.0	≥ 99,999	H ₂ O ≤ 2	Stahlflasche	2	58,4	200
		$O_2 \leq O_2$	Stahlflasche	2	58,4	300
		$\overline{N_2} \leq 1$	Stahlflasche	10	58,4	1000
		KW ≤ 0,5	Stahlflasche	10	58,4	1500
		CF ₄ ≤ 1	Stahlflasche	50	58,4	9000
		H ₂ ≤ 1				
		$C_2F_6 \leq 1$				
		Ar ≤ 1				
		Kr ≤ 1				
		$\overline{(0 + (0)_2)} \leq 1$				

^{*} Fülldruck

Allgemeine Informationen

CAS	7440-63-3		
UN	2036		
Eigenschaften	verdichtetes Gas, erstickend, chemisch inert		
Gefahrensymbole	<u> </u>		
Flaschenschulter			
Ventilanschluss	W 21,80 x 1/14 nach DIN 477 Nr. 6		
AGW	-		
Relative Dichte bezogen auf			
trockene Luft (15°C, 1bar)	4,562		
Konformitätserklärung	online verfügbar im Linde-Kundenportal unter		
	www.linde-gas.de/direkt		

m³ Gas (15°C, 1bar)	l flüssig bei T₅	kg	
1	1,873		_
0,534	1	2,945	_
0.181	0.34		_

Gasgemische & Prüfgase. Basis für valide Aussagen.

Grundlagen

Gasgemische bestehen aus mehreren Atom- bzw. Molekülarten, wobei die Gemische immer homogen gemischt sind.

Prüfgase bilden eine Untergruppe der Gasgemische und zeichnen sich dadurch aus, dass hohe Anforderungen an ihre Herstelltoleranz, relative Messunsicherheit (Analysengenauigkeit) sowie an die Reinheit ihrer Ausgangsprodukte gestellt werden. Verwendung finden diese Gase vorwiegend bei der Kalibrierung von Messgeräten.

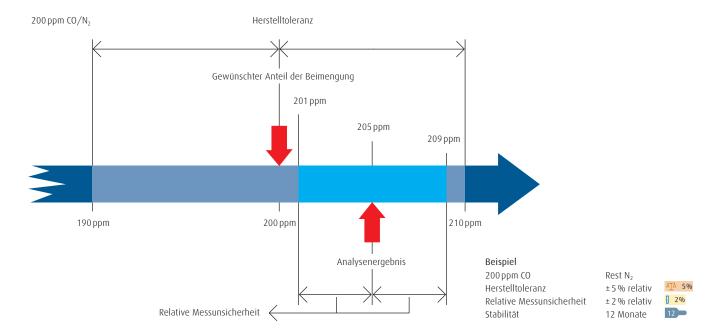
Zusammensetzung

Bei Gasgemischen und Prüfgasen wird die Zusammensetzung durch die Anteile ihrer Komponenten bestimmt. Zur Angabe der Konzentration einer Komponente im Gasgemisch werden unterschiedliche Größen verwendet. Die Konzentration stellt das Verhältnis der Quantität dieser Komponente zum Volumen der Mischphase dar. Für die eindeutige Kennzeichnung sind folgende Angaben möglich:

- → Stoffmengenanteil z.B. mol/mol, mmol/mol, μmol/mol = ppm
- → Massenkonzentration z.B. kg/m³, g/m³, mg/m³
- → Stoffmengenkonzentration z.B. mol/m³, mol/l, mmol/l

Entsprechend Ihren Wünschen können Prüfgase mit einer oder mehreren Beimengungen in einem Grundgas vom unteren ppb- bis hin zum %-Bereich hergestellt werden. Linde besitzt Erfahrung im Umgang mit mehr als 500 reinen Gasen und Dämpfen.

In der Praxis bestehen Einschränkungen hinsichtlich der Mischung verschiedener Gasarten. Auch der höchstmögliche Fülldruck kann aufgrund von Sicherheitsmaßgaben oder angesichts chemischer wie physikalischer Gesetzmäßigkeiten beschränkt sein. Gegebenenfalls sind abhängig von der Konzentration Fülldruckreduzierungen erforderlich, wenn Dämpfe von Flüssigkeiten oder andere leicht kondensierbare Stoffe als Beimengungen gewünscht werden.


Mengenangaben

Bei frei konfigurierbaren Gasgemischen und Prüfgasen (gemäß Ihren Vorgaben) sind den Volumenanteilen ideale Gasvolumina zugrunde gelegt. Entsprechend resultieren daraus ideal gerechnete Füllmengen, die stets auf dem Normzustand 1,013 bar und 273,15 K basieren. Bei Standardgemischen sind in der Regel die realen Füllmengen angegeben.

Genauigkeit der Beimengungsangaben

Je nach gewünschter Zusammensetzung, verwendeter Füll- und Analysenmethode sowie Aufwand bei der Herstellung erstrecken sich die dabei erreichten Genauigkeiten von etwa 0,1 bis 10 Prozent relativ zum angegebenen Wert.

Beispiel: 200 ppm CO in N₂

Herstelltoleranz

Gibt Auskunft über die maximale Abweichung zwischen den von Ihnen gewünschten Beimengungsanteilen im Gasgemisch und den tatsächlichen Anteilen im ausgelieferten Gasgemisch.

Die Herstelltoleranz variiert abhängig von der eingesetzten Herstellmethode und wird in Prozentwerten relativ zur ausgewiesenen Konzentration angegeben. Eine relative Herstelltoleranz von 5 % für ein Gemisch mit 200 ppm bedeutet, dass das ausgelieferte Gemisch 200 ppm ±5 % dieser Komponente enthält. Damit ist ein Konzentrationsbereich von 190–210 ppm dieser Beimengung im Gasgemisch möglich.

Relative Messunsicherheit (Analysengenauigkeit)

Stellt die maximale Abweichung zwischen dem Analysenergebnis, das auf dem Analysenzertifikat ausgewiesen wird, und der tatsächlichen Konzentration im ausgelieferten Gasgemisch dar. Die relative Messunsicherheit wird in Prozentwerten relativ zur analysierten Konzentration angegeben. Das bedeutet, dass eine relative Messunsicherheit von 2% im Beispiel auf dieser Seite einem Analysenergebnis von 205 ppm ± 2% entspricht, die tatsächliche Konzentration ist folglich 201–209 ppm.

Stabilität

Legt den Zeitraum fest, in dem sich die Zusammensetzung des Prüfgases bezüglich der Beimengungen nur innerhalb der angegebenen relativen Messunsicherheit ändern darf.

Diese Angabe ist notwendig, da sich in der Praxis gezeigt hat, dass sich eine Reihe von Prüfgasbeimengungen im Lauf der Zeit

- → durch Reaktion mit der Behälterinnenwand chemisch umsetzen,
- → aus physikalischen Gründen (z.B. hohes Dipolmoment des Moleküls) durch Adsorption an die Behälterinnenwand verstärkt anlagern oder
- → wegen Instabilität der Moleküle unter Druck verändern (z. B. Stickoxide).

Die im Analysenzertifikat angegebenen Stabilitätszeiträume basieren auf eigenen Langzeitbeobachtungen von Testreihen und werden kontinuierlich aktualisiert. Daraus resultierende neue Erkenntnisse kommen Ihnen unmittelbar zugute.

Prüfgase mit kritischen Beimengungen hinsichtlich der Stabilität werden, insbesondere bei niedrigen Stoffmengenanteilen, vor ihrer Auslieferung einer wiederholten Stabilitätsbeobachtung unterzogen. Dieses Vorgehen bedingt zwar eine verlängerte Lieferzeit, wird aber in Ihrem Interesse zur Qualitätsabsicherung bevorzugt. Der zugesicherte Stabilitätszeitraum beginnt mit dem Ausstelldatum des Analysenzertifikates.

Akkreditierung

Was ist eine Akkreditierung?

Eine unabhängige Akkreditierungsstelle liefert den Nachweis, dass eine Konformitätsbewertungsstelle ihre Tätigkeiten fachlich kompetent, unter Beachtung gesetzlicher sowie normativer Anforderungen und auf international vergleichbarem Niveau erbringt.

Wozu dient eine Akkreditierung?

Die Qualität eines Produktes genau belegen und somit vergleichen zu können, ist vor allem im Zeitalter des globalen Handels unverzichtbar. Die Basis internationaler Vergleichbarkeit bilden eine Vielzahl von internationalen Richtlinien und Normen wie DIN EN ISO/IEC 17025. Diese Vorschriften verlangen die metrologische Rückführung von Messergebnissen durch zertifizierte Referenzmaterialien als Grundlage der Vergleichbarkeit.

Rückführbarkeit wird als die nachvollziehbare Kontrolle von Messergebnissen durch Kalibrierung mit Messmitteln bekannter Genauigkeit verstanden, die an anerkannte Messnormale angeschlossen sind. In der physikalischen Messtechnik sind diese Normale die international anerkannten Verkörperungen der entsprechenden SI-Einheiten. Auf diesen Grundsätzen basieren die analytischen Ergebnisse von Prüfund Kalibrierlaboratorien.

Unsere Akkreditierungen

Das Linde-Spezialgasewerk in Unterschleißheim besitzt eine Doppelakkreditierung als Kalibrier- sowie als Prüflabor nach DIN EN ISO/IEC 17025. Aufgrund dieser Akkreditierung durch die Deutsche Akkreditierungsstelle (DAkkS) können bestimmte Gasgemische zusätzlich mit einem international anerkannten DAkkS-Kalibrierschein versehen werden. Zudem besitzt das Werk Unterschleißheim die Kompetenz, nach genormten Verfahren Gasanalysen durchzuführen.

Im Jahr 2009 erfolgte zusätzlich die Akkreditierung als Hersteller von Referenzmaterialien auf Basis des ISO Guide 34, die Linde Gas bislang als erster deutscher Gasehersteller erhielt. Damit besitzt Linde die Fähigkeit, Gasgemische über alle metrologischen Hierarchien hinweg zu fertigen und leistet somit einen wichtigen Beitrag zur metrologischen Infrastruktur in Europa.

2012 und 2013 wurde das Linde-Spezialgasewerk in Unterschleißheim erfolgreich als Prüf- und Kalibrierlabor nach DIN EN ISO/IEC 17025 sowie als Hersteller von Referenzmaterialien nach ISO Guide 34 reakkreditiert. Im Rahmen dieser Reakkreditierung konnten Messmethoden und -bereiche angepasst und der Umfang der einzelnen Akkreditierungen erweitert werden.

Auswahl & Güte

Zunächst ist es nötig festzustellen, in welcher Genauigkeit ein Prüfgas benötigt wird. Infolge hochoptimierter Fertigungsprozesse und Analysenmethoden können wir Prüfgase und Gasgemische verschiedenster Qualitäten bereitstellen, die Ihren Anforderungen an Präzision exakt entsprechen und alle maßgeblichen Normen erfüllen. Das Angebot reicht von normalgebräuchlichen Prüfgasen der Klasse 1 bis 3 über Gemische mit DAkkS-Kalibrierschein bis hin zu hochpräzisen Referenzmaterialien. Die aufeinander abgestimmten Qualitätsniveaus unterscheiden sich hinsichtlich Herstelltoleranz, relativer Messunsicherheit und Rückführbarkeit.

Qualitätspyramide

Prüfgase von Linde	ISO	Metrologische Eigenschaften
Referenzmaterialien Akkreditierung als Hersteller von Referenzmaterialien	ISO Guide 34	 → Direkt überführbar auf SI-Basiseinheit (kg) → Analytische Verifizierung gegen international akzeptierte Standards → Rel. Messunsicherheit ≈ 0,5 %
Gemische mit DAkkS-Kalibrierschein Akkreditierung als Kalibrierlabor	ISO 17025	 → Rückführbar auf international akzeptierte Standards → Rel. Messunsicherheit ≈ 1 %
Prüfgasklassen QM-Zertifizierung Linde Gas	ISO 9001	 → Rückführbar auf Werksnormale (PEH-Gemische) → Rel. Messunsicherheit ≈ 2 %

Referenzmaterialien – höchstes Niveau internationaler Vergleichbarkeit Gemäß ISO Guide 34¹ sind Referenzmaterialien Stoffgemische mit exakt definierter Zusammensetzung, die durch lückenlose messtechnische Rückführung und durch definierte Messunsicherheiten an das internationale Einheitssystem SI² angeschlossen sind. Referenzmaterialien sind für die Kalibrierung von Messgeräten ein unverzichtbarer Bestandteil der chemischen Analytik.

Für die Erzielung einer solch hohen Genauigkeit wird bei der Herstellung der Gemische der Anteil einer jeden Komponente gravimetrisch bestimmt. Die dabei verwendeten Präzisionsgewichtssätze werden zyklisch von zugelassenen Kalibrierlaboratorien kalibriert. Unsere Referenzmaterialien sind folglich direkt rückführbar auf die SI-Basiseinheit Kilogramm.

Die mit gravimetrischen Verfahren erzielbare Genauigkeit hängt signifikant von der Reinheit der Muttergase ab, die für die Herstellung der Gasgemische verwendet werden. Bei Linde werden daher zur Erzeugung von Referenzmaterialien ausschließlich hochreine Grundgase und exzellent vorbehandelte Druckgasbehälter eingesetzt.

Nach dem Füllprozess werden die gravimetrisch gefertigten Gemische homogenisiert und analytisch verifiziert. Die für diese Analysen verwendeten Kalibriergase sind wiederum auf Gasgemische der Metrologischen Staatsinstitute BAM³, NIST⁴, NPL⁵ und VSL (NMi)⁶ rückführbar. Die Berechnung der Messunsicherheiten der zertifizierten Werte erfolgt nach Empfehlungen des GUM³. Dazu wurde von Linde eigens eine Software entwickelt und validiert, die ein Kernstück unserer Akkreditierung darstellt.

Wir passen unsere Akkreditierung regelmäßig an Ihre Bedürfnisse an. Hier ein Auszug:

Referenzmaterialien

	Messgröße	Stoffmengenanteil	Restgas	Rel. Messunsicherheit (%)
Binäre Gemische	CO	5 ppm-10 %	N ₂ , Synth. Luft*	0,5-0,8
	CO ₂	5 ppm-30 %	N ₂ , Synth. Luft	0,5-0,8
	CH ₄	5 ppm-50 %	N ₂ , Synth. Luft*	0,5-0,8
	$\overline{C_2H_6}$	10 ppm-5 %	N ₂ , CH ₄ , Synth. Luft*	0,5-0,8
	$\overline{C_3H_8}$	5 ppm-5 %	N ₂ , CH ₄ , Synth. Luft*	0,5-0,8
	$\overline{O_2}$	5 ppm-25 %	$\overline{N_2}$	0,5-0,8
	NO	5 ppm-1 %	$\overline{N_2}$	0,5-0,8
	$\overline{NO_2}$	5–1000 ppm	N ₂ , Synth. Luft	1,0
	SO ₂	5–1000 ppm	N ₂ , Synth. Luft	0,8
Gemische zur	CO, CO ₂ , C ₃ H ₈ , O ₂ , NO, SO ₂	Variierend	N ₂	0,5-0,8
Abgasuntersuchung				
Synthetische	C_2 - C_6 , He, O_2 , N_2 , CO_2 , CO , H_2	Variierend	CH ₄	0,5-1
Erdgasgemische				

^{*} Nur außerhalb des Ex-Bereiches

¹ ISO Guide 34: General requirements for the competence of reference material producers (Allgemeine Anforderungen an die Kompetenz von Referenzmaterial-Herstellern)

² SI: Système international d'unités (Internationales Einheitensystem)

³ BAM: Bundesanstalt für Materialforschung und -prüfung (D)

⁴ NIST: National Institute of Standards and Technology (USA) 5 NPL: National Physical Laboratory (UK)

⁵ NPL: National Physical Laboratory (UK) 6 VSL (NMi): Van Swinden Laboratorium (NL)

⁷ GUM: Guide to the Expression of Uncertainty in Measurement (Leitfaden zur Angabe der Unsicherheit beim Messen)

Gemische mit DAkkS-Kalibrierschein

Aufgrund behördlicher Vorgaben machen Kunden zunehmend eine Akkreditierung als Kalibrierlabor zur Bedingung für die Auftragserteilung. Kalibrierungen durch Kalibrierlaboratorien geben Ihnen Sicherheit für die Zuverlässigkeit von Messergebnissen, erhöhen Ihre Wettbewerbsfähigkeit auf dem nationalen und internationalen Markt und dienen als messtechnische Grundlage für Mess- und Prüfmittelüberwachung im Rahmen von Qualitätssicherungsmaßnahmen.

Die von Linde gefertigten DAkkS-kalibrierten Gemische sind auf die international anerkannten Referenzmaterialien von BAM, NIST, NPL und VSL (NMi) sowie unsere eigenen Referenzmaterialien rückführbar. Unsere Akkreditierungen umfassen Kalibrierungen für binäre und Multikomponenten-Gemische sowie Kalibriergase für Abgasuntersuchungen und synthetische Erdgasgemische.

Wir passen unsere Akkreditierung regelmäßig an Ihre Bedürfnisse an. Hier ein Auszug:

Gemische mit DAkkS-Kalibrierschein

	Messgröße	Stoffmengenanteil	Restgas	Rel. Messunsicherheit (%)
Binäre bzw. ternäre	He	1-50 %	N ₂ , Synth. Luft	1,0
Kalibriergase	$\overline{H_2}$	1-20 %	$\overline{N_2}$	1,0
	CO	5 ppm-10 %	N ₂ , Synth. Luft*	1,0
	$\overline{CO_2}$	5 ppm-30 %	N ₂ , Synth. Luft	1,0
	CH ₄	5 ppm-50 %	N ₂ , Synth. Luft*	1,0
	$\overline{C_3H_8}$	5 ppm-5 %	N ₂ , Synth. Luft*	1,0
	Hexan	5–500 ppm	N ₂ , Synth. Luft	2,0
	$\overline{O_2}$	5 ppm-30 %	$\overline{N_2}$	1,0
	NO	5 ppm-1 %	$\overline{N_2}$	1,0
	$\overline{NO_2}$	5–1000 ppm	Synth. Luft	2,0
	$\overline{SO_2}$	1–5000 ppm	$\overline{N_2}$	1,0
	NH ₃	5–500 ppm	$\overline{N_2}$	2,0
Ternäre Kalibriergase	N ₂ , H ₂	17-49 %	CH ₄	1,0
	C_2H_6 , N_2	5-15 %	CH ₄	1,0
Gemische zur	$\overline{\text{CO, CO}_2, \text{C}_3\text{H}_8, \text{O}_2, \text{NO, SO}_2}$	Variierend	$\overline{N_2}$	1,0
Abgasuntersuchung				
Synthetische Erdgasgemische	C ₂ -C ₆ , He, O ₂ , N ₂ , CO ₂ , CO, H ₂	Variierend	CH ₄	1,0-2,0

^{*} Nur außerhalb des Ex-Bereiches

Prüfgasklassen

Zur Erfüllung unterschiedlicher Anforderungen an Herstelltoleranz und relative Messunsicherheit von Prüfgasen sind vier Prüfgasklassen lieferbar. Die in der Tabelle aufgeführten Angaben stellen Richtwerte dar. So können sich z.B. bei Beimengungen wie Helium oder Wasserstoff aufgrund des geringen Molekulargewichts Abweichungen bei der Herstelltoleranz ergeben. Dasselbe kann in Behältern kleiner 101 aufgrund der geringen Einwaagen zutreffen. Ebenso kann die Herstelltoleranz und die relative Messunsicherheit bei Mehrkomponenten-Gemischen abweichen.

Die individuellen Angaben für Prüfgase der Klasse 1 und 2 sind im Analysenzertifikat ausgewiesen. Die Zertifikate finden sich in Papierform am Druckgasbehälter, werden jedoch auf Wunsch zusätzlich in elektronischer Form zur Verfügung gestellt.

Prüfgase mit engster Herstelltoleranz (PEH)

Werden einzeln auf hochauflösenden Waagen hergestellt. Die Produktion ist auf die Erzielung einer möglichst geringen Herstelltoleranz optimiert. Durch den Einsatz der Waagen als Analysengeräte werden sehr geringe Analysengenauigkeiten erreicht, da dort die Einwaagen zertifiziert werden. Auslieferung mit Einwaagezertifikat.

Prüfgase der Klasse 1

Werden einzeln oder chargenweise, in der Regel gravimetrisch, hergestellt und einzeln analysiert. Die Zusammensetzung ergibt sich aus den Analysendaten. Bei dieser Herstellmethode liegen die Abweichungen zwischen Soll- und Istwert bei 1 bis 20 %. Die relative Messunsicherheit beträgt je nach Gehalt und Art der Beimengung 1 bis 5 %. Auslieferung mit Analysenzertifikat.

Prüfgase der Klasse 2

Werden chargenweise abgefüllt und vorwiegend einzeln analysiert. Die Zusammensetzung ergibt sich aus den Analysendaten. Durch rationelle chargenweise Abfüllung kann die Abweichung zwischen Soll- und Istwert im Bereich von 2 bis 10 % liegen, die relative Messunsicherheit bewegt sich im Bereich von 2 bis 5 %. Auslieferung in der Regel mit Analysenzertifikat.

Prüfgase der Klasse 3

Werden chargenweise abgefüllt und nur unter sicherheitstechnischen Aspekten analytisch überprüft. Die Zusammensetzung wird aus den Fülldaten ermittelt. Die relative Herstelltoleranz liegt zwischen 5 und 10 %.

Prüfgasklassen

Klasse	Anteil der Beimengungen	Herstelltoleranz*	Relative Messunsicherheit
РЕН	<1 ppm	auf Anfrage	auf Anfrage
	1–10 ppm	± 1 % rel.	± 0,5 % rel.**
	10-999 ppm	± 0,5 % rel.	± 0,3 % rel.**
	0,1-1 %	± 0,3 % rel.	± 0,1 % rel.**
	1-50 %	± 0,2 % rel.	± 0,1 % rel.**
1	<1 ppm	auf Anfrage	auf Anfrage
	1-9,9 ppm	± 20 % rel.	± 5 % rel.
	10-99 ppm	± 10 % rel.	± 2 % rel.
	100-999 ppm	± 5 % rel.	± 2 % rel.
	0,1-4,9 %	± 2 % rel.	± 2 % rel.
	5-50 %	± 1 % rel.	± 1 % rel.
2	100-999 ppm	± 10 % rel.	± 5 % rel.
	0,1-4,9%	± 5 % rel.	± 2 % rel.
	5-50 %	± 2 % rel.	± 2 % rel.
3	0,1-4,9 %	± 10 % rel.	***
	5-50 %	± 5 % rel.	***

^{*} Ausnahmen möglich, z.B. bei Prüfgasen mit Helium oder Wasserstoff und bei Behältern kleiner 10 l sowie Mehrkomponenten-Gemischen.

^{**} Die angegebenen Werte sind abhängig von den einzuwiegenden Komponenten und dem Fülldruck und stellen somit Richtwerte dar.

^{***} Nur aus Sicherheitsgründen chargenweise analytisch überprüft.

Herstellung von Prüfgasen

Vorbehandlung

Neben der Auswahl des idealen Behältermaterials (siehe Einführung "Reingase & Gasgemische") für das jeweilige Gas spielt die Vorbehandlung des Behälters für die Produktqualität eine entscheidende Rolle. Die Druckgasbehälter werden unter Einsatz von Turbomolekularpumpen einer intensiven Behandlung unterzogen. In einem umfangreichen Spül-/Evakuierzyklus, bei gleichzeitiger Erwärmung der Druckgasbehälter, wird erreicht, dass auch Spuren von Gasen, Dämpfen und speziell Feuchte bis unter die analytische Nachweisgrenze entfernt werden. Zudem werden alle Druckgasbehälter vor der Befüllung auf Partikelemissionen sowie verbleibende Restverunreinigungen geprüft.

Produktionsprozess

Für die Herstellung von Prüfgasen werden ausschließlich Gase hoher Reinheit und Dämpfe von reinen Flüssigkeiten eingesetzt. Neben den Reingasen aus unserem Lieferprogramm stehen Ihnen zahlreiche weitere Substanzen als Beimengungen zur Verfügung (siehe "Liste der möglichen Beimengungen" auf Seite 126 f.).

Die Herstellung erfolgt in erster Linie gravimetrisch. Dabei kommen modernste hochauflösende Präzisionswaagen mit hoher Tragkraft zum Einsatz. Somit ist der direkte Bezug der eingewogenen Gase zur Basisgröße "kg" bzw. "mol" gegeben. Prüfgasgemische im ppm- und ppb-Bereich werden sofern nötig unter Verwendung geeigneter "Vorgemische" gravimetrisch hergestellt.

Nach dem Füllvorgang wird das Gasgemisch in einem zusätzlichen Arbeitsschritt homogenisiert. Einmal homogenisierte Gasgemische ändern ihre Zusammensetzung nicht mehr. Das gilt jedoch nur, solange die Kondensationstemperatur einer Beimengung nicht unterschritten wird (temperaturempfindliche Gemische werden auf dem Zertifikat speziell gekennzeichnet).

Auf die Homogenisierung folgt unverzüglich die Qualitätssicherung mittels Gasanalyse. Für die Qualitätsprüfung der Produkte nutzt Linde diverse Verfahren (siehe Einführung "Reingase & Gasgemische"). Auf Basis dieser Untersuchungen wird im Anschluss das entsprechende Zertifikat erstellt, welches mit der Gasflasche ausgeliefert wird.

Besonderheiten bei unter Druck verflüssigten Gasgemischen In einer Gasflasche können Gasgemische sowohl ausschließlich in der Gasphase als auch unter Druck verflüssigt vorliegen, d.h. der überwiegende Teil des Gemisches liegt als Flüssigkeit vor (Dichteverhältnisse zwischen Gas- und Flüssigphase liegen grob bei 1:1000).

Beimengungen mit niedrigen Dampfdrücken erlauben bei gasförmigen Füllungen nur entsprechend niedrige Fülldrücke und damit nur eine geringe verfügbare Menge des jeweiligen Prüfgases. Werden größere Mengen solcher Gase benötigt, ist die Bereitstellung in flüssiger Form vorteilhaft.

Hinweis zur Sortierung der Gasgemische

Auf den folgenden Seiten finden Sie eine umfassende Auswahl an Gasgemischen. Diese sind jeweils alphabetisch nach ihrer ersten Komponente und dann nach Konzentration geordnet. Für ein gezieltes Auffinden einzelner Produkte finden Sie diese auch im Index alphabetisch sortiert.

Liste der möglichen Beimengungen

Die in der Aufstellung angeführten Stoffe sind Beispiele für die wichtigsten bei Linde bevorrateten Gase und Dämpfe von Flüssigkeiten zur Verwendung in der Prüfgasfertigung. Diese Liste wird aus laufenden Entwicklungsarbeiten und auf Kundenwunsch ständig erweitert.

Acetaldehyd
Aceton
Acetonitril
Acetylen (Ethin)
Acrolein
Acrylnitril
Ameisensäureethylester
Ammoniak
Ammoniak-D3 (ND ₃)
Anilin
Argon
Arsin
Benzaldehyd
Benzol
Bortrichlorid
Bortrifluorid
Bromchlordifluormethan (R 12B1)
Bromdichlormethan
Bromethen (Vinylbromid)
Brommethan (Methylbromid, R 40B1)
Bromtrifluormethan (R 13B1)
Bromwasserstoff
1,2-Butadien
1,3-Butadien
Butan
Butanal
n-Butanol
tert-Butanol
1-Buten
2-Buten (cis-/trans-)
1-Butin
2-Butin
Butylacetat
tert-Butylchlorid
tert-Butylmercaptan
tert-Butylmethylether (MTB)

Carbonylsulfid (Kohlenoxid	dsulfid)
Chlor	
Chlorbenzol	
1-Chlorbutan	
2-Chlorbutan	
1-Chlor-1,1-difluorethan (R 142b)
Chlordifluormethan (R 22)	
Chlorethan (Ethylchlorid)	
Chlorethen (Vinylchlorid)	
Chlorjodmethan	
Chlormethan (Methylchlor	id)
Chlorpentafluorethan (R 1	15)
1-Chlorpropan	
2-Chlorpropan	
3-Chlor-1-propen	
2-Chlortoluol	
Chlortrifluormethan (R 13))
Chlorwasserstoff	
Cyanwasserstoff	
Cyclohexan	
Cyclohexanon	
Cyclopentan	
Cyclopropan	
Decan	
1-Decen	
Desfluran	
Deuterium	
Diboran	
Dibromdifluormethan (R 1	2B2)
1,2-Dibromethan	
Dibrommethan (Methylenl	oromid)
Dibutylsulfid	
1,4-Dichlorbutan	
Dichlordifluormethan (R 1	2)
1,1-Dichlorethan	
1,2-Dichlorethan	

1,1-Dichlorethen
1,2-Dichlorethen (cis-/trans-)
1,1-Dichlor-1-fluorethan (R 141b)
Dichlorfluormethan (R 21)
Dichlormethan (Methylenchlorid)
1,2-Dichlorpropan
1,3-Dichlorpropan
cis-1,3-Dichlorpropen
trans-1,3-Dichlorpropen
Dichlorsilan
1,2-Dichlortetrafluorethan (R 114)
2,2-Dichlor-1,1,1,-trifluorethan
(R 123)
Diethylether
Diethylsulfid
1,1-Difluorethan (R 152a)
Difluormethan (R 32)
Dijodmethan (Methylenjodid)
Dimethylamin
2,2-Dimethylbutan
Dimethyldisulfid
Dimethylether
2,4-Dimethylpentan
2,2-Dimethylpropan (Neopentan)
Dimethylsulfid
1,3-Dioxolan
Dipropylsulfid
Disilan
Distickstoffmonoxid (Lachgas,
Stickoxydul)
Dodecan
1-Dodecen
Eisenpentacarbonyl
Enfluran
Epichlorhydrin
Ethan
Ethanol (Ethylalkohol)
Ethen (Ethylen)

Ethylacetat
Ethylamin
Ethylbenzol
Ethylenoxid (Oxiran)
Ethylmercaptan
Ethylmethylketon
Ethylmethylsulfid
2-Ethyltoluol
3-Ethyltoluol
4-Ethyltoluol
FAM-Benzin (nach DIN 51635)
Fluor
Fluormethan (R 41)
Fluorwasserstoff
Formaldehyd
Furan
German
Germaniumtetrafluorid
Helium
Helium-3
Heptan
Hexafluoraceton-trihydrat
Hexafluorethan (R 116)
Hexan
1-Hexen
Isobutan (i-Butan)
Isobutan (R 600a)
Isobuten (i-Buten, Isobutylen)
Isobutylmethylketon
Isofluran
Isopentan
Isopren
Isopropylacetat

Isopropylamin Isopropylmercaptan

Jodethan
Jodmethan
Jodwasserstoff
,
Kohlendioxid
Kohlendioxid-18 (C ¹⁸ O ₂)
Kohlenmonoxid
Kohlenmonoxid-18 (C ¹⁸ O)
Kohlenstoff-13-dioxid (13CO ₂)
Kohlenstoff-13-monoxid (13CO)
Krypton
Methan
Methan-C13 (¹³ CH ₄)
Methan-D4 (CD ₄)
Methanol
Methoxyfluran
Methylamin
2-Methylbutan
2-Methyl-1-buten
2-Methyl-2-buten
3-Methyl-1-buten
Methylcyclopentan
Methylformiat
Methylglycol
Methylmercaptan
Methylmethacrylat
2-Methylpentan
3-Methylpentan
Methylsilan
Methylstyrol
Methylvinylether
Noos
Neon
Neon-20
Neon-22
Nitrobenzol
Nonan

Octafluorcyclobutan (R C318)
Octafluorpropan (R 218)
Octafluortetrahydrofuran C ₄ F ₈ O
Octan
1-Octen
Odorierungsmittel
<u> </u>
Pentafluorethan (R 125)
Pentan
1-Penten
2-Penten (cis-/trans-)
Phosgen
Phosphin
Propadien (Allen)
Propan (R 290)
1-Propanol
2-Propanol
Propen (Propylen)
Propin (Methylacetylen)
Propionaldehyd
Propylenoxid
Propylmercaptan
Pyridin
Sauerstoff
Sauerstoff-18
Schwefeldioxid
Schwefelhexafluorid
Schwefelkohlenstoff
Schwefelwasserstoff
Sevofluran
Silan
Siliciumtetrafluorid
Stickstoff
Stickstoff-15
Stickstoffdioxid/
Distickstofftetroxid
Stickstoffmonoxid
Stickstofftrifluorid
Styrol

Sulfurylfluorid

Tetrachlordifluorethan
1,1,1,2-Tetrachlorethan
1,1,2,2-Tetrachlorethan
Tetrachlorethen
Tetrachlormethan
1,1,1,2-Tetrafluorethan (R 134a)
Tetrafluormethan (R 14)
Tetrahydrofuran
Tetrahydrothiophen
Tetramethylsilan
Thiophen
Toluol
Tribromfluormethan
Tribrommethan (Bromoform)
1,1,1-Trichlorethan
1,1,2-Trichlorethan
Trichlorethen
Trichlorfluormethan (R 11)
Trichlormethan (Chloroform)
Trichlorsilan
1,1,2-Trichlortrifluorethan (R 113)
Triethylamin
1,1,1-Trifluorethan (R 143a)
Trifluormethan (R 23)
Trimethylamin
Trimethylboran
2,4,4-Trimethyl-1-pentan
Trimethylsilan
Undecan
and the same
Vinylacetat
Vinylacetylen
Wasserdampf
Wasserstoff
Vanag
Xenon
Xylol (o-, m- oder p-Xylol)

Ammoniak in Stickstoff

		Zusam	mensetzung	Lieferarten	Rauminhalt Liter	Fülldruck ca. bar	Füllmenge m³
10 ppm Ammoniak, Rest Stickstoff	<u>△</u> [10% [2% 12]	$\frac{NH_3}{N_2}$	10 ppm Rest	Aluminiumflasche	40	150	6
80 ppm Ammoniak, Rest Stickstoff	<u>A</u> T∆10% [2% 12)	$\frac{NH_3}{N_2}$	80 ppm Rest	Aluminiumflasche	2	150	0,3
300 ppm Ammoniak, Rest Stickstoff	△T△ 5% [2% 12)	$\frac{NH_3}{N_2}$	300 ppm Rest	Aluminiumflasche	10	150	1,5

Ammoniak in Synthetischer Luft

		Zusamm	iensetzung	Lieferarten	Rauminhalt Liter	Fülldruck ca. bar	Füllmenge m³
Prüfgas in ECOCYL®	△ 2%	NH ₃	1000 ppm	ECOCYL®	1	150	0,15
1000 ppm Ammoniak,		Synth.	Rest				
Rest Synthetische Luft		Luft					

Argon in Neon

		Zusan	nmensetzung	Lieferarten	Rauminhalt Liter	Fülldruck ca. bar	Füllmenge m³
Prüfgas in HiQ® MINICAN	△IA 5% n.v. 12	Αr	25 %	HiQ [®] MINICAN	1	12	0,012
25 % Argon,		Ne	Rest				
Rest Neon							

Arsin in Wasserstoff

		Zusammer	nsetzung	Lieferarten
10–15 % Arsin, Rest Wasserstoff	<u>↑</u> 2% 2% 12		10-15 % Rest	auf Anfrage lieferbar

Chlor in Stickstoff

		Zusam	mensetzung	Lieferarten	Rauminhalt Liter	Fülldruck ca. bar	Füllmenge m³
12 ppm Chlor, Rest Stickstoff	<u>↑</u> 10% 2% 12	$\frac{Cl_2}{N_2}$	12 ppm Rest	Aluminiumflasche	10	150	1,5

Chlorwasserstoff in Stickstoff

		Zusam	mensetzung	Lieferarten	Rauminhalt Liter	Fülldruck ca. bar	Füllmenge m³
38 ppm Chlorwasserstoff, Rest Stickstoff	<u>↑</u> 10% [2% 12	HCl N ₂	38 ppm Rest	Aluminiumflasche	10	150	1,5

Diboran in Wasserstoff

		Zusamı	mensetzung	Lieferarten	Rauminhalt Liter	Fülldruck ca. bar	Füllmenge m³
50 ppm Diboran, Rest Wasserstoff	△T△10% [2% 12 —	$\frac{B_2H_6}{H_2}$	50 ppm Rest	Aluminiumflasche	40	150	6
2 % Diboran, Rest Wasserstoff	△∏∆ 2% [] 2% 12	$\frac{B_2H_6}{H_2}$	2 % Rest	Stahlflasche	50	150	7,5

Ethanol in Stickstoff

		Zusammensetzung	Lieferarten	Rauminhalt Liter	Fülldruck ca. bar	Füllmenge m³
250 ppm Ethanol, Rest Stickstoff	<u>™</u> 5% [2% 12	$\begin{array}{cc} \text{C}_2\text{H}_5\text{OH} & 250\text{ppm} \\ \text{N}_2 & \text{Rest} \end{array}$	Aluminiumflasche	40	33	1,32

Ethylenoxid in Kohlendioxid

		Zusammensetzung	Lieferarten	Rauminhalt Liter	Fülldruck ca. bar	Füllmenge kg
Sterilisiergas	△I△ 5% n.v. 12	C ₂ H ₄ O 6 %	Stahlflasche	50	50	37,5
6 % Ethylenoxid,		CO ₂ Rest				
Rest Kohlendioxid						
Sterilisiergas	△IA 5% [n.v. 12	C ₂ H ₄ O 10 %	Stahlflasche	50	50	37,5
10 % Ethylenoxid,		CO ₂ Rest				
Rest Kohlendioxid						
Sterilisiergas	△I△ 5% n.v. 12	C ₂ H ₄ O 15 %	Stahlflasche	50	50	37,5
15 % Ethylenoxid,	<u> </u>	CO ₂ Rest				
Rest Kohlendioxid						

German in Wasserstoff

		Zusammensetzung	Lieferarten
1–2 % German, Rest Wasserstoff	<u>↑</u> 2% 2% 12	GeH ₄ 1–2 % H ₂ Rest	auf Anfrage lieferbar

Helium in Stickstoff

		Zusam	nmensetzung	Lieferarten	Rauminhalt Liter	Fülldruck ca. bar	Füllmenge m³
15 % Helium, Rest Stickstoff	△T△ 1% [1% 12	He N ₂	15 % Rest	Stahlflasche	50	200	9,5

Isobutan in Helium (QM-Gas)

		Zusamı	mensetzung	Lieferarten	Rauminhalt Liter	Fülldruck ca. bar	Füllmenge m³
0,95 % Isobutan, Rest Helium	<u> </u>	C₄H ₁₀ He	0,95 % Rest	Stahlflasche	50	200	9,1

Kohlendioxid in Sauerstoff

		Zusam	nmensetzung	Lieferarten	Rauminhalt Liter	Fülldruck ca. bar	Füllmenge m³
Prüfgas in HiQ® MINICAN	△T△ 5% n.v. 12	CO ₂	5,6 %	HiQ [®] MINICAN	1	12	0,012
5,6 % Kohlendioxid,	<u> </u>	O_2	Rest				
Rest Sauerstoff							

Kohlendioxid in Stickstoff

		Zusam	mensetzung	Lieferarten	Rauminhalt Liter	Fülldruck ca. bar	Füllmenge m³
Prüfgas	<u>1</u> 2%	CO_2	1,5 %	Stahlflasche	10	150	1,5
1,5 % Kohlendioxid,		N_2	Rest				
Rest Stickstoff	<u></u> _		2.01	0. 1.10			
Prüfgas	<u> </u>	CO ₂	3 %	Stahlflasche	2	150	0,3
3 % Kohlendioxid, Rest Stickstoff		N_2	Rest				
Prüfgas	△T△ 1% [1% 12]	CO ₂	5 %	Stahlflasche	10	150	1,5
5 % Kohlendioxid,	<u></u>	$\overline{N_2}$	Rest	Stahlflasche	50	150	7,5
Rest Stickstoff		-					•
Prüfgas in HiQ® MINICAN	△ 5%	CO ₂	5 %	HiQ [®] MINICAN	1	12	0,012
5 % Kohlendioxid,		$\overline{N_2}$	Rest				
Rest Stickstoff							
Prüfgas in HiQ® MINICAN	△T△ 5% [n.v. 12	CO ₂	10 %	HiQ [®] MINICAN	1	12	0,012
10 % Kohlendioxid,		N_2	Rest				
Rest Stickstoff							
Prüfgas	<u>1</u> %	CO ₂	10 %	Stahlflasche	10	150	1,5
10 % Kohlendioxid,		$\overline{N_2}$	Rest				
Rest Stickstoff							
Prüfgas	<u>1</u> 1%	CO ₂	15 %	Stahlflasche	10	150	1,5
15 % Kohlendioxid,	1 10 1 10 12	$\overline{N_2}$	Rest				
Rest Stickstoff							

Ausführliche Informationen zu den einzelnen Produkten sind auf www.linde-gas.de einzusehen.

Kohlendioxid in Synthetischer Luft

		Zusammensetzung		Lieferarten	Rauminhalt Liter	Fülldruck ca. bar	Füllmenge m³
Prüfgas	<u> </u>	CO_2	1,5 %	Stahlflasche	2	150	0,3
1,5 % Kohlendioxid,		Synth.	Rest				
Rest Synthetische Luft		Luft					
Prüfgas in HiQ® MINICAN	△T△ 5% n.v. 12	CO ₂	4 %	HiQ [®] MINICAN	1	12	0,012
4% Kohlendioxid,		Synth.	Rest				
Rest Synthetische Luft		Luft					
Prüfgas	<u>1</u> 1%	CO ₂	5 %	Stahlflasche	10	150	1,5
5 % Kohlendioxid,		Synth.	Rest				
Rest Synthetische Luft		Luft					

Kohlendioxid, Distickstoffmonoxid in Sauerstoff

		Zusamı	mensetzung	Lieferarten	Rauminhalt Liter	Fülldruck ca. bar	Füllmenge m³
Prüfgas in HiQ [®] MINICAN	△ 5% [n.v. 12	CO ₂	5 %	HiQ [®] MINICAN	1	12	0,012
5 % Kohlendioxid,		N_2O	65 %				
65 % Distickstoffmonoxid,		02	Rest				
Rest Sauerstoff							

Kohlendioxid, Kohlenmonoxid in Stickstoff

		Zusammensetzung		Lieferarten	Rauminhalt Liter	Fülldruck ca. bar	Füllmenge m³
Prüfgas in HiQ® MINICAN	△IA 5% [n.v. 12	CO ₂	15 %	HiQ [®] MINICAN	1	12	0,012
15 % Kohlendioxid,		CO	0,3 %				
0,3 % Kohlenmonoxid,		$\overline{N_2}$	Rest				
Rest Stickstoff							

Kohlendioxid, Sauerstoff in Stickstoff

		7		liefe each e	0	eall land.	eall
		Zusam	mensetzung	Lieferarten	Rauminhalt Liter	Fülldruck ca. bar	Füllmenge m³
Prüfgas in HiQ® MINICAN	△T△ 5% n.v. 12	CO ₂	2 %	HiQ [®] MINICAN	1	12	0,012
2 % Kohlendioxid,		02	2 %				
2 % Sauerstoff,		N_2	Rest				
Rest Stickstoff							
Prüfgas in HiQ® MINICAN	△T△ 5% [n.v. 12	CO_2	5 %	HiQ [®] MINICAN	1	12	0,012
5 % Kohlendioxid,		02	12 %				
12 % Sauerstoff,		N_2	Rest				
Rest Stickstoff							
Prüfgas in HiQ® MINICAN	△T△ 5% [n.v. 12	CO_2	5 %	HiQ [®] MINICAN	1	12	0,012
5 % Kohlendioxid,		02	20,9 %				
20,9 % Sauerstoff,		N_2	Rest				
Rest Stickstoff							
Prüfgas	<u>1</u> 1%	CO_2	5 %	Stahlflasche	10	150	1,5
5 % Kohlendioxid,		02	12 %				
12 % Sauerstoff,		N_2	Rest				
Rest Stickstoff							
Prüfgas	<u>1</u> 1%	CO_2	5 %	Stahlflasche	10	150	1,5
5 % Kohlendioxid,		02	20 %				
20 % Sauerstoff,		$\overline{N_2}$	Rest				
Rest Stickstoff							
Prüfgas	2% 2 2% 12	CO ₂	6 %	Stahlflasche	10	200	2
6 % Kohlendioxid,		$\overline{O_2}$	12 %				
12 % Sauerstoff,		$\overline{N_2}$	Rest				
Rest Stickstoff							

Kohlenmonoxid in Stickstoff

		Zusam	nmensetzung	Lieferarten	Rauminhalt Liter	Fülldruck ca. bar	Füllmenge m³
Prüfgas in HiQ® MINICAN	△IA 5% [n.v. 12	CO	4 %	HiQ [®] MINICAN	1	12	0,012
4% Kohlenmonoxid,		N_2	Rest				
Rest Stickstoff							
Prüfgas in HiQ [®] MINICAN	△I△ 5% n.v. 12	CO	8 %	HiQ [®] MINICAN	1	12	0,012
8 % Kohlenmonoxid,		N_2	Rest				
Rest Stickstoff							
Prüfgas	<u>10%</u> 2% 12	CO	70 ppm	Aluminiumflasche	10	150	1,5
70 ppm Kohlenmonoxid,		N_2	Rest				
Rest Stickstoff							
Prüfgas	<u>△</u> 10%	CO	80 ppm	Aluminiumflasche	10	150	1,5
80 ppm Kohlenmonoxid		N_2	Rest				
(100 mg/m³), Rest Stickstoff							
Prüfgas	△ 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 1 1 1 1 1 1 1 1	CO	150 ppm	Aluminiumflasche	10	150	1,5
150 ppm Kohlenmonoxid,		$\overline{N_2}$	Rest				
Rest Stickstoff							
Prüfgas	△I△ 5% 2% 12	CO	250 ppm	Aluminiumflasche	10	150	1,5
250 ppm Kohlenmonoxid		N_2	Rest				
(310 mg/m³), Rest Stickstoff							
Prüfgas	<u>△</u> 5% 2% 12	CO	400 ppm	Aluminiumflasche	10	150	1,5
400 ppm Kohlenmonoxid		$\overline{N_2}$	Rest	Aluminiumflasche	40	150	6,9
(500 mg/m³), Rest Stickstoff							
Prüfgas	<u>△</u> 5%	CO	900 ppm	Aluminiumflasche	10	150	1,5
900 ppm Kohlenmonoxid,		$\overline{N_2}$	Rest				
Rest Stickstoff							
Prüfgas	△ 1 % 1 1 % 1 2 •	CO	3 %	Aluminiumflasche	40	150	6,0
3 % ppm Kohlenmonoxid,	1 10 1 10 12	$\overline{N_2}$	Rest				
Rest Stickstoff							
Prüfgas	<u>1</u> 1%	CO	10 %	Aluminiumflasche	40	150	6
10 % Kohlenmonoxid,	1 70 1 70 12	$\overline{N_2}$	Rest				
Rest Stickstoff		_					

Kohlenmonoxid in Synthetischer Luft

		Zusammensetzung		Lieferarten	Rauminhalt Liter	Fülldruck ca. bar	Füllmenge m³
Prüfgas in HiQ [®] MINICAN	△10% n.v. 12	CO	30 ppm	HiQ [®] MINICAN	1	12	0,012
30 ppm Kohlenmonoxid,	· ·	Synth.	Rest				
Rest Synthetische Luft		Luft					
Prüfgas	<u>△</u> 5% 2% 12	CO	250 ppm	Aluminiumflasche	40	150	6
250 ppm Kohlenmonoxid,		Synth.	Rest				
Rest Synthetische Luft		Luft					
Prüfgas	<u>△</u> 10%	CO	270 ppm	Aluminiumflasche	2	150	0,3
270 ppm Kohlenmonoxid,		Synth.	Rest				
Rest Synthetische Luft		Luft					
Prüfgas	△T△ 5% n.v. 12	CO	300 ppm	HiQ [®] MINICAN	1	12	0,012
300 ppm Kohlenmonoxid,		Synth.	Rest	ECOCYL®	1	150	0,15
Rest Synthetische Luft		Luft					

Kohlenmonoxid, Sauerstoff in Stickstoff

			mensetzung	Lieferarten	Rauminhalt Liter	Fülldruck ca. bar	Füllmenge m³
Prüfgas 1700 ppm Kohlenmonoxid, 15 % Sauerstoff, Rest Stickstoff	<u>↑</u> 2% 2% 12	$\frac{CO}{O_2}$ N_2	1700 ppm 15 % Rest	Aluminiumflasche	10	150	1,5

Kohlenmonoxid, Kohlendioxid, Propan in Stickstoff

		Zusam	mensetzung	Lieferarten	Rauminhalt Liter	Fülldruck ca. bar	Füllmenge m³
Prüfgas A für	△ 5% [n.v. 12	CO	3,5 %	HiQ [®] MINICAN	1	12	0,012
Abgasuntersuchung		CO ₂	14%	ECOCYL®	1	150	0,25
		C_3H_8	2000 ppm				
		N_2	Rest				
Prüfgas A für	△IA 5% 2% 12	CO	3,5 %	Aluminiumflasche	10	150	1,5
Abgasuntersuchung		CO_2	14 %				
		C_3H_8	2000 ppm				
		N_2	Rest				
Abgasuntersuchung	△I 5% n.v. 12	CO	1,5 %	HiQ [®] MINICAN	1	12	0,012
		CO_2	11 %				
in HiQ [®] MINICAN		C ₃ H ₈	600 ppm				
		N_2	Rest				
Eichgas A für	2% 2% 24	CO	3,5 %	Aluminiumflasche	10	150	1,5
Abgasuntersuchung		CO_2	14 %	Aluminiumflasche	40	150	6
mit amtlichem Prüfschein		C ₃ H ₈	2000 ppm				
		N_2	Rest				
Eichgas B für	<u> 5% 2% 24 </u>	CO	0,5 %	Aluminiumflasche	10	150	1,5
Abgasuntersuchung		CO_2	6 %	Aluminiumflasche	40	150	6
mit amtlichem Prüfschein		C ₃ H ₈	200 ppm				
		N_2	Rest				

Methan in Argon

		Zusam	imensetzung	Lieferarten	Rauminhalt Liter	Fülldruck ca. bar	Füllmenge m³
P5-Gas ECD	△T△ 2% n.v. 12	CH ₄	5 %	Stahlflasche	50	200	10,9
5 % Methan,		Αr	Rest				
Rest Argon							
P5-Gas Argon-Methan-		CH ₄	5 %	Stahlflasche	50	200	10,9
Gemisch 95/5		Ar	95 %				
P10-Gas ECD	△ 2% [n.v. 12	CH ₄	10 %	Stahlflasche	50	200	10,9
10 % Methan,		Ar	Rest				
Rest Argon							
P10-Gas Argon-Methan-		CH ₄	10 %	Stahlflasche	10	200	2,16
Gemisch 90/10		Αr	90 %	Stahlflasche	50	200	10,9
				Flaschenbündel	600	200	130,8
P10-Gas für Spektrometrie		CH ₄	10 %	Stahlflasche	50	150	7,5
10 % Methan,		Ar	Rest	Stahlflasche	50	200	10,9
Rest Argon							
20 % Methan,	△T△ 1% n.v. 12	CH ₄	20%	Stahlflasche	50	200	10,0
Rest Argon		Ar	Rest				

Methan in Synthetischer Luft

		Zusamn	nensetzung	Lieferarten	Rauminhalt Liter	Fülldruck ca. bar	Füllmenge m³
Prüfgas in HiQ® MINICAN	△I△ 5% n.v. 12	CH ₄	0,88%	HiQ [®] MINICAN	1	12	0,012
0,88 % Methan,		Synth.	Rest				
Rest Synthetische Luft		Luft					
Prüfgas in HiQ [®] MINICAN	△IA 5% [n.v. 12	CH ₄	1 %	HiQ [®] MINICAN	1	12	0,012
1 % Methan,		Synth.	Rest				
Rest Synthetische Luft		Luft					
Prüfgas	<u> </u>	CH ₄	1 %	Stahlflasche	10	150	1,5
1% Methan,		Synth.	Rest				
Rest Synthetische Luft		Luft					
Prüfgas in HiQ [®] MINICAN	△I△ 5% [n.v. 12	CH ₄	1,76%	HiQ [®] MINICAN	1	12	0,012
1,76 % Methan,		Synth.	Rest				
Rest Synthetische Luft		Luft					
Prüfgas	<u>4</u>	CH ₄	2 %	Stahlflasche	10	150	1,5
2 % Methan,		Synth.	Rest				
Rest Synthetische Luft		Luft					
Prüfgas	<u>△</u> 2%	CH ₄	2,2 %	Stahlflasche	2	150	0,3
2,2 % Methan,		Synth.	Rest	Stahlflasche	10	150	1,5
Rest Synthetische Luft		Luft		Stahlflasche	50	150	7,5
Prüfgas in ECOCYL®	△I△ 5% [n.v. 12	CH ₄	2,2 %	ECOCYL®	1	150	0,15
2,2 % Methan,		Synth.	Rest				
Rest Synthetische Luft		Luft					
Prüfgas	△ 5%	CH ₄	2,5 %	HiQ [®] MINICAN	1	12	0,012
2,5 % Methan,		Synth.	Rest	HiQ [®] MAXICAN	1,2	40	0,048
Rest Synthetische Luft		Luft		ECOCYL®	1	150	0,15
Prüfgas	<u>1</u> 2% [2% 12]	CH ₄	2,5 %	Stahlflasche	10	150	1,5
2,5 % Methan,	1 270 1270	Synth.	Rest				
Rest Synthetische Luft		Luft					

Methan, Ethan, Propan, Butan, Isobutan in Helium

		Zusammensetzung		Lieferarten	Rauminhalt Liter	Fülldruck ca. bar	Füllmenge m³
Prüfgas in HiQ® MINICAN	△10%	CH ₄	10 ppm	HiQ [®] MINICAN	1	12	0,012
je 10 ppm Methan, Ethan,		C_2H_6	10 ppm				
Propan, Butan, Isobutan,		C ₃ H ₈	10 ppm				
Rest Helium		n-C ₄ H ₁₀	10 ppm				
		i-C ₄ H ₁₀	10 ppm				
		Не	Rest				
Prüfgas in HiQ [®] MINICAN	△10%	CH ₄	100 ppm	HiQ [®] MINICAN	1	12	0,012
je 100 ppm Methan, Ethan,		C_2H_6	100 ppm				
Propan, Butan, Isobutan,		C ₃ H ₈	100 ppm				
Rest Helium		n-C ₄ H ₁₀	100 ppm				
		i-C ₄ H ₁₀	100 ppm				
		Не	Rest				

Phosphin in Wasserstoff

		Zusan	nmensetzung	Lieferarten	Rauminhalt Liter	Fülldruck ca. bar	Füllmenge m³
20–100 ppm Phosphin, Rest Wasserstoff	△T△ 5% [3% 12 →	$\frac{PH_3}{H_2}$	20–100 ppm Rest	Aluminiumflasche	40	150	6,0
0,5 % Phosphin, Rest Wasserstoff	△T△ 2% [] 2% 12	PH ₃ H ₂	0,5 % Rest	Stahlflasche	50	150	6,9

Propan in Stickstoff

		Zusamı	mensetzung	Lieferarten	Rauminhalt Liter	Fülldruck ca. bar	Füllmenge m³
Prüfgas	10% 2% 12	C_3H_8	90 ppm	Aluminiumflasche	10	150	1,5
90 ppm Propan,		N_2	Rest				
Rest Stickstoff							

Propan in Synthetischer Luft

		Zusamr	mensetzung	Lieferarten	Rauminhalt Liter	Fülldruck ca. bar	Füllmenge m³
Prüfgas	<u>10%</u> 2% 12	C ₃ H ₈	50 ppm	Stahlflasche	10	150	1,5
50 ppm Propan,	0	Synth.	Rest				
Rest Synthetische Luft		Luft					
Prüfgas	<u>△</u> 10% 2% 12	C ₃ H ₈	92 ppm	Stahlflasche	10	150	1,5
92 ppm Propan,	0	Synth.	Rest				
Rest Synthetische Luft		Luft					
Prüfgas in HiQ [®] MINICAN	△T△ 5% [n.v. 12	C ₃ H ₈	0,5 %	HiQ [®] MINICAN	1	12	0,012
0,5 % Propan,	<u> </u>	Synth.	Rest				
Rest Synthetische Luft		Luft					
Prüfgas	<u> </u>	C ₃ H ₈	0,8 %	Stahlflasche	10	150	1,5
0,8 % Propan,	<u> </u>	Synth.	Rest	Stahlflasche	50	150	7,5
Rest Synthetische Luft		Luft					
Prüfgas	<u> </u>	C ₃ H ₈	0,85 %	Stahlflasche	2	150	0,3
0,85 % Propan,	<u> </u>	Synth.	Rest	Stahlflasche	10	150	1,5
Rest Synthetische Luft		Luft					
Prüfgas	△T△ 5% n.v. 12	C ₃ H ₈	1 %	HiQ [®] MINICAN	1	12	0,012
1 % Propan,	0	Synth.	Rest	HiQ [®] MAXICAN	1,2	40	0,048
Rest Synthetische Luft		Luft		ECOCYL®	1	150	0,15

Sauerstoff in Stickstoff

		Zusan	nmensetzung	Lieferarten	Rauminhalt Liter	Fülldruck ca. bar	Füllmenge m³
Prüfgas in HiQ [®] MINICAN 1 % Sauerstoff,	△T△ 5% [n.v. 12	$\frac{O_2}{N_2}$	1 % Rest	HiQ [®] MINICAN	1	12	0,012
Rest Stickstoff		1112	KCJ				
Prüfgas	△T△ 2%	02	1 %	Stahlflasche	10	150	1,5
1% Sauerstoff,		$\overline{N_2}$	Rest				
Rest Stickstoff							
2 % Sauerstoff,	△ <u>T</u> △ 2% <u> 2% 12</u>	02	2 %	Stahlflasche	10	150	1,5
Rest Stickstoff	0	N_2	Rest				
Prüfgas	△ <u>T</u> △ 2% 2% 12	02	2,5 %	Stahlflasche	10	150	1,5
2,5 % Sauerstoff,	1 200 200	$\overline{N_2}$	Rest				
Rest Stickstoff							
Prüfgas	<u> 2% 2% 12 </u>	02	4 %	Stahlflasche	10	150	1,5
4% Sauerstoff,	<u> </u>	N_2	Rest	Stahlflasche	50	200	9,65
Rest Stickstoff							
5 % Sauerstoff,	1% 1% 12	02	5 %	Stahlflasche	50	150	7,5
Rest Stickstoff		N_2	Rest				
Prüfgas	△ <u> </u> 1% 1% 12	02	8 %	Stahlflasche	10	150	1,5
8 % Sauerstoff,		N_2	Rest	Stahlflasche	50	150	7,5
Rest Stickstoff							
Prüfgas	<u>1</u> 1%	02	9 %	Stahlflasche	10	150	1,5
9 % Sauerstoff,		N_2	Rest				
Rest Stickstoff			10.0/	Stahlflasche	10	150	4.5
Prüfgas 10 % Sauerstoff,	<u>1</u> %	02	10 %	Stanifiasche	10	150	1,5
Rest Stickstoff		N_2	Rest				
18 % Sauerstoff,	△ <u> </u> 1% 1% 12	02	18 %	Stahlflasche	10	150	1,5
Rest Stickstoff	170 170 12	$\overline{N_2}$	Rest				
Synthetische Luft in HIQ® MINICAN	△T△ 5% ∏ n.v. 12	02	20 %	HIQ® MINICAN	1	12	0,012
20 % Sauerstoff,		$\frac{1}{N_2}$	Rest	•			•
Rest Stickstoff							
Synthetische Luft	5%	02	20 %	Stahlflasche	10	200	1,95
20 % Sauerstoff,		$\overline{N_2}$	Rest	Stahlflasche	50	200	9,75
Rest Stickstoff				Flaschenbündel	600	200	117
Synthetische Luft KW-frei	△T△ 5% n.v. 12	02	20 %	HIQ® MAXICAN	1,2	40	0,048
20 % Sauerstoff,		N_2	Rest	ECOCYL®	1	150	0,150
Rest Stickstoff							

		Zusamı	mensetzung	Lieferarten	Rauminhalt Liter	Fülldruck ca. bar	Füllmenge m³
Synthetische Luft KW-frei	△ 1 1 1 1 1 1 1	02	20 %	Stahlflasche	10	200	1,95
20 % Sauerstoff,		N_2	Rest	Stahlflasche	50	200	9,75
Rest Stickstoff				Stahlflasche	50	300	15
				Flaschenbündel	600	200	117
Prüfgas	<u> </u>	02	20,9 %	Stahlflasche	2	150	0,3
20,9 % Sauerstoff, Rest Stickstoff		N ₂	Rest	Stahlflasche	10	150	1,5

Schwefeldioxid in Stickstoff

		Zusam	mensetzung	Lieferarten	Rauminhalt Liter	Fülldruck ca. bar	Füllmenge m³
Prüfgas 250 mg/m³	<u>1</u> 2 10 %	SO ₂	88 ppm	Aluminiumflasche	10	150	1,5
Schwefeldioxid (88 ppm),	1 11 10 2 10	$\overline{N_2}$	Rest				
Rest Stickstoff							
Prüfgas 800 mg/m³	<u>√</u> 5% 2% 12	SO ₂	280 ppm	Aluminiumflasche	10	150	1,5
Schwefeldioxid (280 ppm),		$\overline{N_2}$	Rest				
Rest Stickstoff							
Prüfgas 2000 mg/m³	<u>√</u> 5% 2% 12	SO ₂	700 ppm	Aluminiumflasche	10	150	1,5
Schwefeldioxid (700 ppm),		$\overline{N_2}$	Rest				
Rest Stickstoff							

Schwefelwasserstoff in Stickstoff

		Zusam	mensetzung	Lieferarten	Rauminhalt Liter	Fülldruck ca. bar	Füllmenge m³
Prüfgas	△ <u>1</u> △10% <u>2%</u> 12	H ₂ S	20 ppm	Aluminiumflasche	10	150	1,5
20 ppm Schwefelwasserstoff,		N_2	Rest				
Rest Stickstoff							
Prüfgas	△ <u> </u> 10% 2% 12	H ₂ S	40 ppm	Aluminiumflasche	2	150	0,3
40 ppm Schwefelwasserstoff,		N_2	Rest				
Rest Stickstoff							

Schwefelwasserstoff in Synthetischer Luft

		Zusammense	etzung	Lieferarten	Rauminhalt Liter	Fülldruck ca. bar	Füllmenge m³
Prüfgas in ECOCYL®	△I△10% n.v. 12	H ₂ S 45	ppm	ECOCYL [®]	1	150	0,15
45 ppm Schwefelwasserstoff,		Synth. Res	st				
Rest Synthetische Luft		Luft					

Silan in Helium

		Zusam	mensetzung	Lieferarten	Rauminhalt Liter	Fülldruck ca. bar	Füllmenge m³
1–2 % Silan, Rest Helium	<u>1</u> 2% [2% 12 −	SiH ₄ He	1-2 % Rest	Stahlflasche	50	150	7,5

Silan in Wasserstoff

		Zusamı	mensetzung	Lieferarten	Rauminhalt Liter	Fülldruck ca. bar	Füllmenge m³
1–2 % Silan, Rest Wasserstoff	<u>™ 2% [2% 12</u>	SiH ₄ H ₂	1-2 % Rest	Stahlflasche	50	150	7,5

Stickstoffmonoxid in Stickstoff

		Zusam	mensetzung	Lieferarten	Rauminhalt Liter	Fülldruck ca. bar	Füllmenge m³
Prüfgas NITIM 250 ppb Stickstoffmonoxid, Rest Stickstoff	△ 20% [5% 12	NO N ₂	250 ppb Rest	Aluminiumflasche	10	150	1,5
Prüfgas NITIM 400 ppb Stickstoffmonoxid, Rest Stickstoff	<u>↑</u> 20% [5% 12	$\frac{NO}{N_2}$	400 ppb Rest	Aluminiumflasche	10	150	1,5
Prüfgas	<u>△</u> 10% 2% 12	NO	90 ppm	Aluminiumflasche	10	150	1,5
121 mg/m³ Stickstoffmonoxid (90 ppm), Rest Stickstoff	I	N ₂	Rest	Aluminiumflasche	40	150	6
Prüfgas in ECOCYL® 100 ppm Stickstoffmonoxid, Rest Stickstoff	4 <u>1</u> 10% [n.v. 12	NO N ₂	100 ppm Rest	ECOCYL®	1	150	0,15
Prüfgas 135 mg/m³ Stickstoffmonoxid (101 ppm), Rest Stickstoff	△T△ 5% [2% 12 —	NO N ₂	101 ppm Rest	Aluminiumflasche	10	150	1,5
Prüfgas 250 mg/m³ Stickstoffmonoxid (187 ppm), Rest Stickstoff	△↑↑ 5% [2% 12	NO N ₂	187 ppm Rest	Aluminiumflasche	10	150	1,5
Prüfgas 268 mg/m³ Stickstoffmonoxid (200 ppm), Rest Stickstoff	△Ţ△ 5% [] 2% 12	NO N ₂	200 ppm Rest	Aluminiumflasche	10	150	1,5
Prüfgas 340 mg/m³ Stickstoffmonoxid (254 ppm), Rest Stickstoff	△Ţ△ 5% [2% 12	$\frac{NO}{N_2}$	254 ppm Rest	Aluminiumflasche	10	150	1,5
Prüfgas 400 mg/m³ Stickstoffmonoxid (300 ppm), Rest Stickstoff	△T△ 5% [2% 12 —	NO N ₂	300 ppm Rest	Aluminiumflasche	10	150	1,5

		Zusamr	mensetzung	Lieferarten	Rauminhalt Liter	Fülldruck ca. bar	Füllmenge m³
Prüfgas 600 mg/m³ Stickstoffmonoxid (448 ppm), Rest Stickstoff	<u> </u>	$\frac{NO}{N_2}$	448 ppm Rest	Aluminiumflasche	10	150	1,5
Prüfgas 1070 mg/m³ Stickstoffmonoxid (800 ppm), Rest Stickstoff	<u>↑</u> 5% 2% 12	NO N ₂	800 ppm Rest	Aluminiumflasche	40	150	6
Prüfgas 1100 mg/m³ Stickstoffmonoxid (822 ppm), Rest Stickstoff	<u> </u>	$\frac{NO}{N_2}$	822 ppm Rest	Aluminiumflasche	10	150	1,5
Prüfgas 1205 mg/m³ Stickstoffmonoxid (900 ppm), Rest Stickstoff	<u>↑</u> 5% 2% 12	NO N ₂	900 ppm Rest	Aluminiumflasche	10	150	1,5
Prüfgas 2210 mg/m³ Stickstoffmonoxid (1650 ppm), Rest Stickstoff	<u>↑</u> 2%	NO N ₂	1650 ppm Rest	Aluminiumflasche	10	150	1,5
Prüfgas 10 % Stickstoffmonoxid, Rest Stickstoff	<u>↑</u> 1% 1% 12	NO N ₂	10 % Rest	Aluminiumflasche	40	150	6

Stickstoff in Sauerstoff

		Zusar	mmensetzung	Lieferarten	Rauminhalt Liter	Fülldruck ca. bar	Füllmenge m³
Prüfgas	△ 1%	N_2	20 %	Stahlflasche	10	150	1,5
20 % Stickstoff,		02	Rest				
Rest Sauerstoff							

Trimethylboran in Wasserstoff

		Zusammensetzung	Lieferarten	Rauminhalt Liter	Fülldruck ca. bar	Füllmenge m³
0,5 % Trimethylboran, Rest Wasserstoff	<u> </u>	B(CH ₃) ₃ 0,5 % H ₂ Rest	Stahlflasche	50	150	6,9
2 % Trimethylboran, Rest Wasserstoff	△↑ 2% [2% 12	B(CH ₃) ₃ 2 % H ₂ Rest	Stahlflasche	50	88	4,4

Wasserstoff in Argon

		Zusam	mensetzung	Lieferarten
Argon-Wasserstoff-Gemisch	<u>1</u> 2%	H ₂	2-5 %	auf Anfrage lieferbar
für Spektrometrie		AΓ	Rest	
2-5 % Wasserstoff,				
Rest Argon				

Wasserstoff in Helium

		Zusan	nmensetzung	Lieferarten	Rauminhalt Liter	Fülldruck ca. bar	Füllmenge m³
40 % Wasserstoff,	<u>△</u> 2% 2% 12	H ₂	40 %	Stahlflasche	50	200	10
Rest Helium		Не	Rest	Flaschenbündel	600	200	120
				Flaschenbündel	600	300	180

Wasserstoff in Stickstoff

		Zusar	mmensetzung	Lieferarten	Rauminhalt Liter	Fülldruck ca. bar	Füllmenge m³
Prüfgas in HiQ [®] MINICAN	△ 5% n.v. 12	H ₂	10 %	HiQ [®] MINICAN	1	12	0,012
10 % Wasserstoff,		$\overline{N_2}$	Rest				
Rest Stickstoff							

Wasserstoff in Synthetischer Luft

		Zusamn	nensetzung	Lieferarten	Rauminhalt Liter	Fülldruck ca. bar	Füllmenge m³
Prüfgas in HiQ® MINICAN	△T△ 5% n.v. 12	H ₂	1 %	HiQ [®] MINICAN	1	12	0,012
1 % Wasserstoff,		Synth.	Rest				
Rest Synthetische Luft		Luft					
Prüfgas in HiQ® MINICAN	△T△ 5% n.v. 12	H ₂	1,6 %	HiQ [®] MINICAN	1	12	0,012
1,6 % Wasserstoff,		Synth.	Rest				
Rest Synthetische Luft		Luft					
Prüfgas in HiQ® MINICAN	△I [△] 2% 2% 12	H ₂	1,6 %	Stahlflasche	50	150	7,5
1,6 % Wasserstoff,		Synth.	Rest				
Rest Synthetische Luft		Luft					
Prüfgas in ECOCYL®	△ 5% n.v. 12	H ₂	2 %	ECOCYL®	1	150	0,15
2 % Wasserstoff,		Synth.	Rest				
Rest Synthetische Luft		Luft					
Prüfgas in HiQ® MINICAN	<u>1</u> 2%	H ₂	2 %	Stahlflasche	2	150	0,3
2 % Wasserstoff,		Synth.	Rest				
Rest Synthetische Luft		Luft					

Wasserstoff, Kohlenmonoxid, Sauerstoff in Stickstoff

		Zusan	nmensetzung	Lieferarten	Rauminhalt Liter	Fülldruck ca. bar	Füllmenge m³
Prüfgas	<u>4</u> 5%	H_2	300 ppm	Aluminiumflasche	10	150	1,5
300 ppm Wasserstoff,		CO	400 ppm				
400 ppm Kohlenmonoxid,		$\overline{O_2}$	5 %				
5 % Sauerstoff,		$\overline{N_2}$	Rest				
Rest Stickstoff							

Gasgemische für spezielle Anwendungen. Gasgemische für Excimer-Laser

		Zusaı	mmensetzung	Lieferarten	Rauminhalt Liter	Fülldruck ca. bar	Füllmenge m³
Premix 157 nm	<u> </u>	F_2	0,1-0,2 %	Stahlflasche	10	150	1,35
0,1-0,2 % Fluor,		Не	Rest				
Rest Helium							
Premix 193 nm	<u>4</u> 5%	F_2	0,1-0,2 %	Stahlflasche	10	150	1,4
0,1-0,2 % Fluor, 1-10 % Argon,		Ar	1-10 %				
1–20 % Helium,		Не	1-20 %				
Rest Neon		Ne	Rest				
Premix 248 nm	<u>4</u> 5%	F_2	0,1-0,2 %	Stahlflasche	10	150	1,4
0,1-0,2 % Fluor, 1-5 % Krypton,		Κr	1-5 %				
1-20 % Helium,		Не	1-20 %				
Rest Neon		Ne	Rest				
Premix 308 nm	<u>△</u> 10% 2% 12	HCl	0,01-0,2 %	Stahlflasche	10	150	1,4
0,01-0,2 % Chlorwasserstoff,		H ₂	0,01-0,05%				
0,01-0,05 % Wasserstoff,		Xe	0,1-2 %				
0,1-2 % Xenon, 1-5 % Helium,		Не	1-5 %				
Rest Neon		Ne	Rest				
Premix 351 nm	<u> </u>	F ₂	0,1-0,3 %	Stahlflasche	10	150	1,4
0,1-0,3 % Fluor, 0,1-1 % Xenon,		Xe	0,1-1 %				
1–20 % Helium,		Не	1-20 %				
Rest Neon		Ne	Rest				
Gasgemisch	<u> </u>	F ₂	1-5 %	Stahlflasche	10	150	1,35
1-5 % Fluor,		Ne	Rest				
Rest Neon							
LASERMIX® E80	△I [△] 2% 2% 12	F ₂	5 %	Stahlflasche	10	28	0,28
	1 2 10 0 2 10 12	He	Rest	Stahlflasche	10	150	1,35
				Stahlflasche	50	150	6,9

Kältemittel

	Zusammens	etzung	Lieferarten
R 407C	CH ₂ F ₂	23 %	auf Anfrage lieferbar
23 % Difluormethan (R 32),	CHF ₂ CF ₃	25 %	
25 % Pentafluorethan (R 125),	CH ₂ FCF ₃	52 %	
52 % 1,1,1,2-Tetrafluorethan (R 134a)			
R 407F	CH ₂ F ₂	30 %	auf Anfrage lieferbar
30 % Difluormethan (R 32),	CHF ₂ CF ₃	30 %	
30 % Pentafluorethan (R 125),	CH ₂ FCF ₃	40 %	
40 % 1,1,1,2-Tetrafluorethan (R 134a)			
R 404A	CHF ₂ CF ₃	44 %	auf Anfrage lieferbar
44 % Pentafluorethan (R 125),	CH ₂ FCF ₃	4 %	
4% 1,1,1,2-Tetrafluorethan (R 134a),	CH ₃ CF ₃	52 %	
52 % 1,1,1-Trifluorethan (R 143)			
R 410A	CH ₂ F ₂	50 %	auf Anfrage lieferbar
50 % Difluormethan (R 32),	CHF ₂ CF ₃	50 %	-
50 % Pentafluorethan (R 125)	2 3		
R 417A	CHF ₂ CF ₃	46,6%	auf Anfrage lieferbar
46,6% Pentafluorethan (R 125),	CH ₃ CH ₂ CH ₂ CI	H ₃ 3,4 %	
3,4 % Butan (R 600),	CH ₂ FCF ₃	50 %	
50 % 1,1,1,2-Tetrafluorethan (R 134a)			
R 422A	CH ₃ (CH ₃) ₃	3,3 %	auf Anfrage lieferbar
3,3 % Isobutan (R 600a),	CHF ₂ CF ₃	85,2 %	
85,2 % Pentafluorethan (R 125),	CH ₂ FCF ₃	11,5 %	
11,5 % 1,1,1,2-Tetrafluorethan (R 134a)			
R 422D	CH ₃ (CH ₃) ₃	3,5%	auf Anfrage lieferbar
3,5 % Isobutan (R 600a),	CHF ₂ CF ₃	65 %	
65 % Pentafluorethan (R 125),	CH ₂ FCF ₃	31,5 %	
31,5 % 1,1,1,2-Tetrafluorethan (R 134a)			
R 437A	CH ₃ (CH ₃) ₃	1,4 %	auf Anfrage lieferbar
1,4% Isobutan, 0,6% n-Pentan (R 601),	n-C ₅ H ₁₂	0,6 %	
19 % Pentafluorethan (R 125),	CHF ₂ CF ₃	19 %	
79 % 1,1,1,2-Tetrafluorethan (R 134a)	CH ₂ FCF ₃	79 %	
R 507	CHF ₂ CF ₃	50 %	auf Anfrage lieferbar
50 % Pentafluorethan (R 125),	CH ₃ CF ₃	50 %	
50 % 1,1,1-Trifluorethan (R 143a)			

LASERMIX® – Gasgemische für CO₂-Laser

		Zusam	mensetzung	Lieferarten	Rauminhalt Liter	Fülldruck ca. bar	Füllmenge m³
LASERMIX® 299	<u>4</u> 5%	H ₂	0,4%	Stahlflasche	50	26,6	1,6
		CO ₂	Rest				
LASERMIX® 302	<u>△T</u> △ 5% [2% 12	CO ₂	1,7 %	Stahlflasche	50	200	9,1
		N_2	23,4 %				
		He	Rest				
LASERMIX® 312	△I [△] 2% [2% 12]	CO_2	3,14%	Stahlflasche	50	200	9,2
		N_2	31,40 %				
		Не	Rest				
LASERMIX® 321	△I△ 5% [n.v. 12	CO_2	5 %	Stahlflasche	50	200	9,3
		N_2	40 %				
		Не	Rest				
LASERMIX® 322	<u>1</u> 2%	CO_2	5,5 %	Stahlflasche	50	200	9,2
		N_2	29 %				
		Не	Rest				
LASERMIX® 324	△I△ 10% [n.v. 12	CO ₂	3,4%	Stahlflasche	50	200	9,1
		N_2	15,6 %				
		Не	Rest				
LASERMIX® 328	<u>△</u> 5% [2% 12	CO_2	12 %	Stahlflasche	50	200	9,3
		N_2	12 %				
		Не	76 %				
LASERMIX® 331	△T△ 5% [n.v. 12	CO_2	5 %	Stahlflasche	50	200	9,2
		N_2	35 %				
		Не	Rest				
LASERMIX® 362	<u>△</u>	CO_2	5,4 %	Stahlflasche	50	200	9,2
		N_2	27 %				
		He	Rest				

		Zusam	nmensetzung	Lieferarten	Rauminhalt Liter	Fülldruck ca. bar	Füllmenge m³
LASERMIX® 462	△T△ 2%	CO ₂	5,38 %	Stahlflasche	50	200	9,2
		N_2	27 %				
		H ₂	0,02 %				
		Не	Rest				
LASERMIX® 472	△T△ 5% 2% 12	CO_2	8 %	Aluminiumflasche	40	150	5,6
		N_2	16 %				
		CO	2 %				
		Не	Rest				
LASERMIX® 483	<u>△</u> 5%	CO_2	8,0 %	Aluminiumflasche	40	150	5,7
		N_2	60,0 %				
		CO	4,0 %				
		Не	Rest				
LASERMIX® 581	<u>△</u> 5%	CO_2	7,5 %	Aluminiumflasche	40	150	5,6
		N_2	15 %				
		H ₂	0,25 %				
		CO	3 %				
		Не	Rest				
LASERMIX® 584	<u>△</u> 5%	CO_2	8 %	Aluminiumflasche	40	150	5,7
		N_2	16 %				
		H ₂	0,5 %				
		CO	4 %				
		Не	Rest				
LASERMIX® 690	△T△ 5% 2% 12 □	CO_2	4 %	Aluminiumflasche	10	150	1,4
		N_2	19 %				
		CO	6 %				
		02	3 %				
		Xe	3 %				
		Не	Rest				

Prüfgase für Gasgeräte mit atmosphärischen Brennern

	Zusammensetzung	Lieferarten
G20	CH ₄ 100%	auf Anfrage lieferbar
G21	<u>C₃</u> H ₈ 13 % CH₄ Rest	auf Anfrage lieferbar
G23	$\frac{N_2}{CH_4}$ Rest	auf Anfrage lieferbar
G25	$\frac{N_2}{CH_4}$ Rest	auf Anfrage lieferbar
G26	C ₃ H ₈ 7 % N ₂ 13 %	auf Anfrage lieferbar
G30	CH ₄ Rest C ₄ H ₁₀ 100 %	auf Anfrage lieferbar
G31	C ₃ H ₈ 100 %	auf Anfrage lieferbar
G32	C ₃ H ₈ 100 %	auf Anfrage lieferbar
G110	N ₂ 24 % CH ₄ 26 %	auf Anfrage lieferbar
G112	$\begin{array}{cccc} & & H_2 & Rest \\ \hline CH_4 & & 17 \% \\ \hline N_2 & & 24 \% \\ \hline H_2 & Rest \\ \end{array}$	auf Anfrage lieferbar
G120	$\begin{array}{ccc} & & H_2 & Rest \\ N_2 & 21 \% & \\ \hline CH_4 & 32 \% & \\ H_2 & Rest & \\ \end{array}$	auf Anfrage lieferbar
G130	$\frac{C_3H_8}{Synth} = \frac{26,5\%}{Synth}$ Luft	auf Anfrage lieferbar
G221	$\frac{H_{2}}{N_{2}}$ 15% $\frac{N_{2}}{CH_{4}}$ Rest	auf Anfrage lieferbar
G271	$\frac{N_2}{CH_4} = \frac{26\%}{Rest}$	auf Anfrage lieferbar

Prüfgase für Gaskalorimeter

	Zusamm	ensetzung	Lieferarten	Rauminhalt Liter	Fülldruck ca. bar	Füllmenge m³
2H	C_2H_6	12,3 %	auf Anfrage lieferbar			
	CH_4	Rest				
2HL	C_2H_6	6,5 %	auf Anfrage lieferbar			
	CH_4	Rest				
2LH	N_2	7 %	auf Anfrage lieferbar			
	CH ₄	Rest				
2LHL	N_2	8,7 %	auf Anfrage lieferbar			
	CH_4	Rest				
2L	N_2	11,7 %	Stahlflasche	10	200	2,2
	CH ₄	Rest				
2LL	N_2	17,5 %	auf Anfrage lieferbar			
	CH ₄	Rest				
35	N ₂	17 %	auf Anfrage lieferbar			
	CH ₄	34%				
	H ₂	Rest				

	Zusamme	nsetzung	Lieferarten
B-5K	CO ₂	5,5 %	auf Anfrage lieferbar
	$\frac{1}{N_2}$	2,0 %	
	$\frac{1}{H_2}$	2,0 %	
	$\overline{O_2}$	1,0 %	
	CH ₄	Rest	
B1-5K	CO ₂	0,4 %	auf Anfrage lieferbar
	$\overline{N_2}$	2,0 %	
	$\overline{H_2}$	2,0 %	
	$\overline{O_2}$	1,0 %	
	CH ₄	Rest	
6H	CO ₂	1,8 %	auf Anfrage lieferbar
	$\overline{N_2}$	0,4 %	
	n-C ₄ H ₁₀	1,0 %	
	C ₃ H ₈	3,4%	
	C_2H_6	9,4%	
	CH ₄	Rest	
6L	CO ₂	1,0 %	auf Anfrage lieferbar
	$\overline{N_2}$	14,4%	
	n-C ₄ H ₁₀	0,1%	
	C ₃ H ₈	0,5 %	
	C_2H_6	3,0 %	
	CH ₄	Rest	
P1-7K	CO ₂	4,0 %	auf Anfrage lieferbar
	N_2	8,0 %	
	n-C ₄ H ₁₀	0,5 %	
	02	0,3 %	
	C_3H_8	4,0 %	
	C_2H_6	5,0 %	
	CH_4	Rest	
L1-8K	CO_2	4,5 %	auf Anfrage lieferbar
	N ₂	12 %	
	i-C ₅ H ₁₂	0,05 %	
	<u>i-C₄H₁₀</u>	0,2 %	
	n-C ₄ H ₁₀	0,2 %	
	C ₃ H ₈	0,3 %	
	C_2H_6	0,75 %	
	CH ₄	Rest	

	Zusammensetzung	Lieferarten	Rauminhalt Liter	Fülldruck ca. bar	Füllmenge m³
L2-8K	CO ₂ 1,0 %	auf Anfrage lieferbar			
	N ₂ 10,3 %				
	i-C ₅ H ₁₂ 0,05 %				
	<u>i</u> -C ₄ H ₁₀ 0,2 %				
	C_3H_8 1,25 %				
	C_2H_6 4,0%				
	n-C ₄ H ₁₀ 0,2 %				
	CH ₄ Rest				
H1-8K	CO ₂ 0,9 %	auf Anfrage lieferbar			
	N ₂ 1,0 %				
	i-C ₅ H ₁₂ 0,05 %				
	i-C ₄ H ₁₀ 0,2 %				
	n-C ₄ H ₁₀ 0,2 %				
	C_3H_8 0,25 %				
	C_2H_6 1,0%				
	CH ₄ Rest				
H2-8K	CO ₂ 1,5 %	auf Anfrage lieferbar			
	N ₂ 4,0 %				
	i-C ₅ H ₁₂ 0,05 %				
	i-C ₄ H ₁₀ 0,2 %				
	$n-C_4H_{10}$ 0,2%				
	<u>C₃H₈ 2,0 %</u>				
	C ₂ H ₆ 8,2 %	_			
	CH ₄ Rest		10	450	4.5
9M	CO ₂ 2,5 %	Aluminiumflasche	10	150	1,5
	N ₂ 4,0 %				
	H ₂ 0,2 %	_			
	i-C ₄ H ₁₀ 0,2 %				
	$\frac{\text{n-C}_4\text{H}_{10}}{\text{0.4.0}}$				
	0 ₂ 0,4%				
	C ₃ H ₈ 1,0 %				
	C ₂ H ₆ 2,5 %				
	CH ₄ Rest				

	Zusammensetzung	Lieferarten	Rauminhalt Liter	Fülldruck ca. bar	Füllmenge m³
9E	CO ₂ 2,0 %	auf Anfrage lieferbar			
	N ₂ 8,0 %				
	H ₂ 1,0 %				
	i-C ₄ H ₁₀ 0,5 %				
	n-C ₄ H ₁₀ 0,5 %				
	O ₂ 2,0%				
	C ₃ H ₈ 3,0 %				
	C ₂ H ₆ 4,0 %				
	CH ₄ Rest				
P1-9K	CO ₂ 3,5 %	auf Anfrage lieferbar			
	N ₂ 3,0 %				
	H ₂ 0,3 %				
	i-C ₄ H ₁₀ 0,3 %				
	n-C ₄ H ₁₀ 0,3 %				
	O ₂ 0,3 %				
	C ₃ H ₈ 4,75 %				
	C_2H_6 0,35 %				
	CH ₄ Rest				
11M	CO ₂ 1,5 %	Aluminiumflasche	10	150	1,5
	N ₂ 4 %				
	i-C ₅ H ₁₂ 0,05 %				
	i-C ₄ H ₁₀ 0,2 %				
	n-C ₆ H ₁₄ 0,05 %				
	n-C ₄ H ₁₀ 0,2 %				
	0,5 %				
	C ₃ H ₈ 1 %				
	C_2H_6 4 %				
	n-C ₅ H ₁₂ 0,05 %				
	CH ₄ Rest				
11D	CO ₂ 1,5 %	Aluminiumflasche	10	150	1,5
	N ₂ 4 %				
	i-C ₅ H ₁₂ 0,05 %				
	neo-C ₅ H ₁₂ 0,05 %				
	i-C ₄ H ₁₀ 0,2 %				
	n-C ₆ H ₁₄ 0,05 %				
	n-C ₄ H ₁₀ 0,2 %				
	C ₃ H ₈ 1 %				
	C ₂ H ₆ 4 %				
	n-C ₅ H ₁₂ 0,05 %				
	CH ₄ Rest				

	Zusammensetzung	Lieferarten
H1-11K	CO ₂ 0,35 %	auf Anfrage lieferbar
	N ₂ 1,35 %	į
	i-C ₅ H ₁₂ 0,05 %	
	neo-C ₅ H ₁₂ 0,05 %	
	i-C ₄ H ₁₀ 0,1 %	
	n-C ₆ H ₁₄ 0,05 %	
	n-C ₄ H ₁₀ 0,1 %	
	C ₃ H ₈ 0,2 %	
	C_2H_6 0,4%	
	n-C ₅ H ₁₂ 0,05 %	
	CH ₄ Rest	
H1A-11K	CO ₂ 0,35 %	auf Anfrage lieferbar
	N ₂ 1,35 %	
	<u>i</u> -C ₅ H ₁₂ 0,05 %	
	<u>i</u> -C ₄ H ₁₀ 0,10 %	
	n-C ₆ H ₁₄ 0,05 %	
	n-C ₄ H ₁₀ 0,10 %	
	0 ₂ 0,05 %	
	C_3H_8 0,20 %	
	C_2H_6 0,40 %	
	n-C ₅ H ₁₂ 0,05 %	
	CH ₄ Rest	
H2-11K	CO ₂ 1,45 %	auf Anfrage lieferbar
	N ₂ 0,95 %	
	i-C ₅ H ₁₂ 0,05 %	
	neo-C ₅ H ₁₂ 0,05 %	
	i-C ₄ H ₁₀ 0,2 %	
	n-C ₆ H ₁₄ 0,05 %	
	n-C ₄ H ₁₀ 0,2 %	
	<u>C</u> ₃ H ₈ 3 %	
	<u>C</u> ₂ H ₆ 9 %	
	n-C ₅ H ₁₂ 0,05 %	
	CH ₄ Rest	

	Zusammensetzung	Lieferarten
H3-11K	CO ₂ 1 %	auf Anfrage lieferbar
	N ₂ 2,5 %	
	i-C ₅ H ₁₂ 0,025 %	
	neo-C ₅ H ₁₂ 0,05%	
	i-C ₄ H ₁₀ 0,25 %	
	n-C ₆ H ₁₄ 0,05 %	
	n-C ₄ H ₁₀ 0,2 %	
	C ₃ H ₈ 1,3 %	
	C ₂ H ₆ 6,5 %	
	n-C ₅ H ₁₂ 0,05 %	
	CH ₄ Rest	
L1-11K	CO ₂ 1,55 %	auf Anfrage lieferbar
	N ₂ 11 %	
	i-C ₅ H ₁₂ 0,05 %	
	neo-C ₅ H ₁₂ 0,05 %	
	i-C ₄ H ₁₀ 0,1 %	
	n-C ₆ H ₁₄ 0,05 %	
	n-C ₄ H ₁₀ 0,1 %	
	C ₃ H ₈ 0,3 %	
	C_2H_6 0,75 %	
	n-C ₅ H ₁₂ 0,05 %	
	CH ₄ Rest	
L2-11K	CO ₂ 1,8 %	auf Anfrage lieferbar
	N ₂ 9,2 %	
	i-C ₅ H ₁₂ 0,05 %	
	neo-C ₅ H ₁₂ 0,05 %	
	i-C ₄ H ₁₀ 0,1 %	
	n-C ₆ H ₁₄ 0,05 %	
	n-C ₄ H ₁₀ 0,1 %	
	C_3H_8 0,5 %	
	C_2H_6 3 %	
	n-C ₅ H ₁₂ 0,05 %	
	CH ₄ Rest	

	Zusammensetzung	Lieferarten
P1-11K	CO ₂ 3,0 %	auf Anfrage lieferbar
	N ₂ 8,0 %	
	i-C ₅ H ₁₂ 0,1%	
	neo-C ₅ H ₁₂ 0,025 %	
	i-C ₄ H ₁₀ 0,5 %	
	n-C ₆ H ₁₄ 0,025 %	
	n-C ₄ H ₁₀ 0,5 %	
	<u>C</u> ₃ H ₈ 2,0 %	
	C_2H_6 6,5 %	
	n-C ₅ H ₁₂ 0,1 %	
	CH ₄ Rest	
12M	CO ₂ 1,50 %	auf Anfrage lieferbar
	N ₂ 4,00%	
	i-C ₅ H ₁₂ 0,05 %	
	H ₂ 1,00 %	
	i-C ₄ H ₁₀ 0,20 %	
	n-C ₆ H ₁₄ 0,05 %	
	n-C ₄ H ₁₀ 0,20 %	
	0,20 %	
	<u>C</u> ₃ H ₈ 1,00 %	
	<u>C</u> ₂ H ₆ 4,00 %	
	n-C ₅ H ₁₂ 0,05 %	
	CH ₄ Rest	
12E	CO ₂ 1,50 %	auf Anfrage lieferbar
	N ₂ 4,00%	
	i-C ₅ H ₁₂ 0,05 %	
	neo-C₅H ₁₂ 0,05 %	
	H ₂ 1,00 %	
	i-C ₄ H ₁₀ 0,20 %	
	<u>n-C₆H₁₄ 0,05 %</u>	
	<u>n-C₄H₁₀ 0,20 %</u>	
	<u>C</u> ₃ H ₈ 1,00 %	
	<u>C</u> ₂ H ₆ 4,00 %	
	n-C ₅ H ₁₂ 0,05 %	
	CH ₄ Rest	

	Zusammensetzung	Lieferarten
13K	CO ₂ 1,50 %	auf Anfrage lieferbar
	N ₂ 4,00%	
	i-C ₅ H ₁₂ 0,05 %	
	neo-C ₅ H ₁₂ 0,05 %	
	H ₂ 1,00 %	
	i-C ₄ H ₁₀ 0,20 %	
	n-C ₆ H ₁₄ 0,05 %	
	n-C ₄ H ₁₀ 0,20 %	
	0 ₂ 0,50 %	
	<u>C</u> ₃ H ₈ 1,00 %	
	$\underline{C_2H_6}$ 4,00%	
	n-C ₅ H ₁₂ 0,05 %	
	CH ₄ Rest	
13D	CO ₂ 1,50 %	auf Anfrage lieferbar
	N ₂ 4,00 %	
	i-C ₅ H ₁₂ 0,05 %	
	neo-C ₅ H ₁₂ 0,05 %	
	H ₂ 1,00 %	
	<u>i</u> -C ₄ H ₁₀ 0,20 %	
	<u>CO</u> 0,50 %	
	n-C ₆ H ₁₄ 0,05 %	
	n-C ₄ H ₁₀ 0,20 %	
	<u>C</u> ₃ H ₈ 1,00 %	
	C ₂ H ₆ 4,00 %	
	n-C ₅ H ₁₂ 0,05 %	
	CH ₄ Rest	
16M	CO ₂ 1,00 %	auf Anfrage lieferbar
	N ₂ 5,00 %	
	i-C ₅ H ₁₂ 0,05 %	
	H ₂ 1,00 %	
	i-C ₄ H ₁₀ 0,20 %	
	<u>CO</u> 0,50 %	
	n-C ₆ H ₁₄ 0,06 %	
	n-C ₄ H ₁₀ 0,20 %	
	0 ₂ 0,50 %	
	C ₃ H ₈ 1,00 %	
	C ₂ H ₄ 0,50 %	
	C_3H_6 0,50 %	
	C ₂ H ₆ 2,50 %	
	He 0,50 %	
	n-C ₅ H ₁₂ 0,05 %	
	CH ₄ Rest	

	Zusammensetzung	Lieferarten
17K	$\begin{array}{c} \text{CO}_2 & 1,00\% \\ \text{N}_2 & 5,00\% \\ \text{i} \cdot \text{C}_5 \text{H}_{12} & 0,05\% \\ \text{neo} \cdot \text{C}_5 \text{H}_{12} & 0,05\% \\ \text{H}_2 & 1,00\% \\ \text{i} \cdot \text{C}_4 \text{H}_{10} & 0,20\% \\ \text{CO} & 0,50\% \\ \text{n} \cdot \text{C}_6 \text{H}_{14} & 0,06\% \\ \text{n} \cdot \text{C}_6 \text{H}_{14} & 0,06\% \\ \text{n} \cdot \text{C}_4 \text{H}_{10} & 0,20\% \\ \text{O}_2 & 0,50\% \\ \text{C}_3 \text{H}_8 & 1,00\% \\ \text{C}_2 \text{H}_4 & 0,50\% \\ \text{C}_2 \text{H}_4 & 0,50\% \\ \text{C}_2 \text{H}_6 & 2,50\% \\ \text{He} & 0,50\% \\ \text{n} \cdot \text{C}_5 \text{H}_{12} & 0,05\% \\ \end{array}$	auf Anfrage lieferbar
	CH ₄ Rest	

Druckgasbehälter für Spezialgase. Breites Sortiment für unterschiedlichste Aufgaben.

Gase kommen in verschiedensten Anwendungen zum Einsatz und werden entsprechend in unterschiedlichsten Mengen benötigt.

Um Ihre Anforderungen zu erfüllen, bieten wir Ihnen ein breites Portfolio an Druckgasbehältern und Lieferformen:

- → Standardbehälter
- → Kleinbehälter
- → Fässer

Für verdichtete oder unter Druck verflüssigte Gase, deren kritische Temperatur $T_k < +70\,^{\circ}\text{C}$ beträgt, verwendet Linde Gas nahtlose Hochdruckflaschen aus Stahl oder Aluminium. Größere Transporteinheiten sind Flaschenbündel. Diese bestehen aus 12 Hochdruckflaschen, die in einem Stahlrahmen fixiert und durch Rohrleitungen verbunden sind. Gasbefüllung und -entnahme erfolgen über ein gemeinsames Ventil. Auf Batteriefahrzeugen, Trailer genannt, ist eine größere Anzahl von Flaschen fest montiert.

Für einige unter Druck verflüssigte Gase, deren $T_k \ge +70\,^{\circ}$ C ist, finden geschweißte Niederdruckflaschen aus Stahlblech Anwendung. Für diese Gase sind auch geschweißte Stahlfässer verfügbar, die z.T. in einem Rahmen eingespannt und für den Straßentransport zugelassen sind.

Da Gase spezielle Eigenschaften besitzen und zum Teil gemäß § 4 der GefStoffV Gefahrenstoffe darstellen, sind Druckgasbehälter und Inhalt mit Sorgfalt und Vorsicht zu behandeln. Dazu finden Sie in den Kapiteln "Kennzeichnung von Druckgasbehältern" und "Umgang mit Druckgasbehältern" grundlegende Hinweise für Ihre Sicherheit.

Kennzeichnung von Druckgasbehältern. Entscheidend für sicheres Arbeiten.

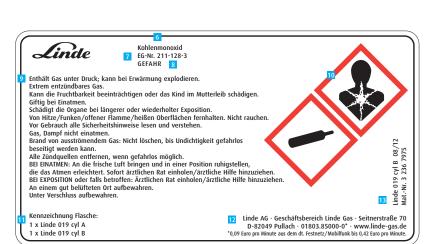
In diesem Kapitel sind die wichtigsten Informationen und die aktuellen Normen zusammengefasst, die das Thema "Kennzeichnung von Druckgasbehältern" betreffen. Da gesetzliche Regelwerke permanenter Veränderung unterliegen, können manche Angaben inzwischen veraltet sein. Ausführliche Informationen über den aktuellen Stand entnehmen Sie bitte der Fachpresse.

GHS

Zielsetzung der Einführung des "Globally Harmonized System of Classification and Labelling of Chemicals" (GHS) ist die weltweite Harmonisierung der Kriterien für die Einstufung und Kennzeichnung von Chemikalien. Zudem sollen international vergleichbare Standards für Verbraucherschutz, Arbeitssicherheit und Umweltschutz rund um den Globus geschaffen werden. Das GHS ist eine freiwillige UN-Initiative, die bisher rund 60 Länder umsetzen.

CLP

Die EU-Version des GHS, genannt "CLP" (Classification, Labelling, Packaging), regelt Klassifizierung, Kennzeichnung und Verpackung von Stoffen und Chemikalien. Die CLP-Verordnung besitzt seit dem


20. Januar 2009 unter (EG) Nr. 1272/2008 Gültigkeit und wird kontinuierlich durch sogenannte Anpassungen an den technischen Fortschritt (ATP) ergänzt. Seit Dezember 2010 wurden alle reinen Stoffe gemäß der CLP-Vorschrift neu gekennzeichnet. Bis 1. Juni 2015 sind alle Gemische entsprechend der CLP-Kriterien einzustufen und dementsprechend zu kennzeichnen.

Die Vorgaben für die harmonisierte Gefahrenkommunikation betreffen einerseits die Einführung neuer Kriterien, andererseits die Änderung von bereits bestehenden Kriterien. Sie haben Auswirkung auf:

- → Gefahrenklassen
- → Gefahrenkategorien
- → Gefahrenpiktogramme
- → Signalwörter
- → Gefahrenhinweise
- → Sicherheitshinweise
- → Vorsichtsmaßnahmen

Die deutlichste Veränderung besteht in den neuen Gefahrenpiktogrammen, zugehörigen Signalwörtern und Gefährdungsbeschreibungen, den "Hazard Statements" (H-Sätze). Diese sind nachfolgend in einer Tabelle zusammengefasst. Entsprechend sind die Gefahrenaufkleber für Gasflaschen verändert worden. Die bestehenden Transportgefahrensymbole behalten dagegen weiterhin Gültigkeit.

- UN-Nummer & Gasbezeichnung gemäß ADR: Kennnummer für alle gefährlichen Stoffe und Güter (Gefahrgut), festgelegt von den Vereinten Nationen
- 2 Gefahrenzettel nach Gefahrgutrecht (GGVSEB, ADR)
- 3 EG-Nummer: Ordnungskategorie des Europäischen Chemikalienrechts
- 4 Wichtige Hinweise des Herstellers
- 5 Adresse und Telefonnummer des Herstellers
- Benennung des Stoffes
- **7** EG-Nummer nur bei Einzelstoffen, entfällt bei Gemischen
- Signalwort nach CLP-Verordnung
- Gefahren- und Sicherheitshinweise (H-, P- und EU-Hinweise nach CLP-Verordnung)
- ${\color{red} {f 10}}$ Gefahrenpiktogramme nach CLP-Verordnung
- II Hinweis, welche Etiketten sich auf dem Druckgasbehälter befinden müssen
- 12 Name, Anschrift und Telefonnummer Linde Gas Deutschland
- 13 Etikettnummer und Versionsdatum

Gefahrenpiktogramme und zugehörige Gefährdungsbeschreibungen (H-Sätze)

Die im Folgenden aufgelisteten H-Sätze (Stand: 2. ATP der CLP-Verordnung vom 10. März 2011) beschreiben Gefährdungen, die von Gefahrstoffen ausgehen und besitzen international Gültigkeit.

Hazard Statements

Piktogramm

H-Sätze

H200 Instabil, explosiv

H201 Explosiv, Gefahr der Massenexplosion

H202 Explosiv; große Gefahr durch Splitter, Sprengund Wurfstücke

H203 Explosiv; Gefahr durch Feuer, Luftdruck oder Splitter, Spreng- und Wurfstücke

H204 Gefahr durch Feuer oder Splitter, Sprengund Wurfstücke

H205 Gefahr der Massenexplosion bei Feuer

H240 Erwärmung kann Explosion verursachen

H241 Erwärmung kann Brand oder Explosion verursachen

H220 Extrem entzündbares Gas

H221 Entzündbares Gas

H222 Extrem entzündbares Aerosol

H223 Entzündbares Aerosol

H224 Flüssigkeit und Dampf extrem entzündbar

H225 Flüssigkeit und Dampf leicht entzündbar

H226 Flüssigkeit und Dampf entzündbar

H228 Entzündbarer Feststoff

H241 Erwärmung kann Brand oder Explosion verursachen

H242 Erwärmung kann Brand verursachen

H250 Entzündet sich in Berührung mit Luft von selbst

H251 Selbsterhitzungsfähig, kann sich selbst erhitzen; kann in Brand geraten

H252 In großen Mengen selbsterhitzungsfähig; kann in Brand geraten

H260 In Berührung mit Wasser entstehen entzündbare Gase, die sich spontan entzünden können

H261 In Berührung mit Wasser entstehen entzündbare Gase

H270 Kann Brand verursachen oder verstärken; Oxidationsmittel

H271 Kann Brand oder Explosion verursachen; starkes Oxidationsmittel

H280 Enthält Gas unter Druck; kann bei Erwärmung explodieren

H281 Enthält tiefkaltes Gas; kann Kälteverbrennungen oder -verletzungen verursachen

H290 Kann gegenüber Metallen korrosiv sein

H314 Verursacht schwere Verätzungen der Haut und schwere Augenschäden

H318 Verursacht schwere Augenschäden

Piktogramm

H-Sätze

H300 Lebensgefährlich bei Verschlucken

H310 Lebensgefahr bei Hautkontakt

H330 Lebensgefahr bei Einatmen

H301 Giftig bei Verschlucken

H311 Giftig bei Hautkontakt

H331 Giftig bei Einatmen

H312 Gesundheitsschädlich bei Hautkontakt

H332 Gesundheitsschädlich bei Einatmen

H315 Verursacht Hautreizungen

H317 Kann allergische Hautreaktionen verursachen

H318 Verursacht schwere Augenschäden

H319 Verursacht schwere Augenreizung

H335 Kann die Atemwege reizen

H336 Kann Schläfrigkeit und Benommenheit verursachen H420 Schädigt die öffentliche Gesundheit und die

Umwelt durch Ozonabbau der äußeren Atmosphäre

H334 Kann bei Einatmen Allergien, asthmaartige Symptome oder Atembeschwerden verursachen H340 Kann genetische Defekte verursachen (Expositionsweg angeben, sofern schlüssig belegt ist, dass diese Gefahr bei keinem anderen Expositionsweg besteht) H341 Kann vermutlich genetische Defekte verursachen (Expositionsweg angeben, sofern schlüssig belegt ist, dass diese Gefahr bei keinem anderen Expositionsweg

H350 Kann Krebs erzeugen (Expositionsweg angeben, sofern schlüssig belegt ist, dass diese Gefahr bei keinem anderen Expositionsweg besteht)

H350i Kann bei Einatmen Krebs erzeugen

H351 Kann vermutlich Krebs erzeugen (Expositionsweg angeben, sofern schlüssig belegt ist, dass diese Gefahr bei keinem anderen Expositionsweg besteht)

H360 Kann die Fruchtbarkeit beeinträchtigen oder das Kind im Mutterleib schädigen (sofern bekannt, konkrete Wirkung angeben; Expositionsweg angeben, sofern schlüssig belegt ist, dass diese Gefahr bei keinem anderen Expositionsweg besteht)

H360F Kann die Fruchtbarkeit beeinträchtigen H360D Kann das Kind im Mutterlieb schädigen H360FD Kann die Fruchtbarkeit beeinträchtigen. Kann das Kind im Mutterleib schädigen.

Piktogramm

H-Sätze

H360Df Kann das Kind im Mutterleib schädigen. Kann vermutlich die Fruchtbarkeit beeinträchtigen. H361 Kann vermutlich die Fruchtbarkeit beeinträchtigen oder das Kind im Mutterleib schädigen (sofern bekannt, konkrete Wirkung angeben; Expositionsweg angeben, sofern schlüssig belegt ist, dass die Gefährdung bei keinem anderen Expositionsweg besteht) H361f Kann vermutlich die Fruchtbarkeit beeinträchtigen H361d Kann vermutlich das Kind im Mutterleib schädigen H361fd Kann vermutlich die Fruchtbarkeit beeinträchtigen; kann vermutlich das Kind im Mutterleib schädigen H362 Kann Säuglinge über die Muttermilch schädigen H370 Schädigt die Organe (oder alle betroffenen Organe nennen, sofern bekannt; Expositionsweg angeben, sofern schlüssig belegt ist, dass diese Gefahr bei keinem anderen Expositionsweg besteht)

H371 Kann die Organe schädigen (oder alle betroffenen Organe nennen, sofern bekannt; Expositionsweg angeben, sofern schlüssig belegt ist, dass diese Gefahr bei keinem anderen Expositionsweg besteht)
H372 Schädigt die Organe (alle betroffenen Organe nennen) bei längerer oder wiederholter Exposition (Expositionsweg angeben, wenn schlüssig belegt ist, dass diese Gefahr bei keinem anderen Expositionsweg besteht)
H373 Kann die Organe schädigen (alle betroffenen Organe nennen) bei längerer oder wiederholter Exposition (Expositionsweg angeben, sofern schlüssig belegt ist, dass diese Gefahr bei keinem anderen Expositionsweg besteht)

H304 Kann bei Verschlucken und Eindringen in die Atemwege lebensgefährlich sein

H400 Sehr giftig für Wasserorganismen

H410 Sehr giftig für Wasserorganismen, mit langfristiger Wirkung

H411 Giftig für Wasserorganismen, mit langfristiger

H412 Schädlich für Wasserorganismen, mit langfristiger Wirkung

H413 Kann für Wasserorganismen schädlich sein, mit langfristiger Wirkung

Übersicht der Flaschenschultern

In Deutschland ist die Farbe der Flaschenschulter von Druckgasbehältern gemäß DIN EN 1089-3 festgelegt. Die Norm stellt ein System der Farbkennzeichnung von Gasflaschen dar.

Gase und Gasgemische werden entsprechend der Eigenschaften des Gasinhaltes (siehe Tafel 1) gekennzeichnet. Für gebräuchliche Gase gibt es zudem eine festgelegte spezielle Kennzeichnung (siehe Tafel 2).

Die Farbe des zylindrischen Flaschenmantels ist in der Norm (bis auf medizinische Gase) nicht festgelegt. Um eine möglichst einheitliche Zuordnung zu Haupteinsatzgebieten zu erleichtern, haben die Mitgliedsfirmen des Industriegaseverbandes zusätzlich folgende Farbgebung vereinbart:

- → Industriegase: Grau oder gleiche Farbgebung wie die Schulter, jedoch nicht Weiß
- → Sonder-/Spezialgase: Nicht festgelegt
- → Medizin-/Inhalationsgase: Weiß
- → Atemluftflaschen (eingesetzt von Feuerwehren und Rettungsdiensten): Gelb bzw. Rot

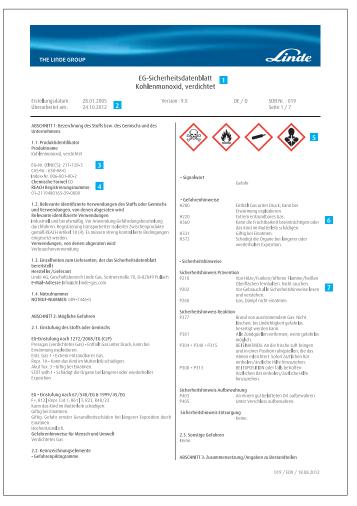
Wichtig: Die Norm gilt nicht für Bündel- und Trailerflaschen sowie für Feuerlöscher und Gasflaschen für Flüssiggas.

Tafel 1: Allgemeine Kennzeichnungsregel*

Eigenschaften	Schulterfarbe	Beispiele
Giftig und/oder ätzend	Gelb	Ammoniak, Chlor, Arsin, Fluor,
<i>J</i> ,		Kohlenmonoxid, Stickstoffmonoxid,
		Schwefeldioxid
Entzündbar	Rot	Wasserstoff, Methan, Ethen,
		Formiergas,
		Stickstoff-Wasserstoff-Gemisch
Oxidierend	Hellblau	Sauerstoff-, Lachgasgemische
Erstickend (inert)	Leuchtendes Grün	Krypton, Xenon,
, ,		Neon, Schweißschutzgasgemische,
		Druckluft technisch

 $^{^{\}star}$ Für Gase und Gasgemische, die nicht speziell festgelegt sind.

Tafel 2: Spezielle Kennzeichnung für gebräuchliche Gase


Gas	Schulterfarbe	Gas	Schulterfarbe	
Acetylen	Kastanienbraun	Stickstoff	Schwarz	
Sauerstoff	Weiß	Kohlendioxid	Grau	
Distickstoffmonoxid (Lachgas)	Blau	Helium	Braun	
Argon	Dunkelgrün			

Umgang mit Druckgasbehältern. Sicher durch umfassende Informationen.

Unter dem Umgang mit Druckgasbehältern versteht man unter anderem das Befördern, das Lagern und das Bereitstellen sowie das Entleeren der Behälter an der Bedarfsstelle. Ein sicherer Einsatz von Gasen ist nur möglich, wenn deren spezifische Eigenschaften berücksichtigt werden und die Handhabung der Druckgasbehälter mit Sorgfalt und Umsicht des Anwenders erfolgt. Anders ausgedrückt: Gase haben weder gute noch schlechte Eigenschaften, es kommt einzig auf den korrekten Umgang mit ihnen an. Für den Umgang mit Druckgasbehältern sind eine Reihe von Vorschriften und Regeln zu beachten.

Aufgrund der vielfältigen Eigenschaften und Einsatzgebiete von Gasen ist es nicht möglich, Ihnen hier im Detail die jeweils geltenden Vorschriften und Regeln aufzuzählen. Im Folgenden finden Sie daher einige grundlegende Informationen zum Umgang mit Druckgasbehältern.

Für weiterführende Informationen stehen Ihnen unsere allgemeinen Sicherheitshinweise sowie detaillierte Produktsicherheitsdatenblätter (erhältlich z.B. über unser Kundenportal Linde Gas DIREKTTM) zur Verfügung. Auch unsere Mitarbeiter in den Linde-Vertriebszentren helfen Ihnen gerne weiter.

- Name des Produkts, dem das vorliegende Sicherheitsdatenblatt zugeordnet wird
 Aktualität des Sicherheitsdatenblattes
- **3** EG- und CAS-Nummer zur eindeutigen Identifikation
- 4 Produkt ist gemäß REACH-Verordnung registriert*
- 5 Gefahrenpiktogramme gemäß GHS-Verordnung
- 6 Gefahrenbeschreibungen gemäß GHS-Verordnung
- 7 Ergänzende Sicherheitshinweise gemäß GHS-Verordnung

^{*} Im Zuge der REACH-Verordnung (Registration, Evaluation, Authorisation and Restriction of Chemicals) wurden alle Sicherheitsdatenblätter um Expositionsszenarien erweitert. REACH trat am 01.07.2007 in Kraft. In Phase I wurden alle Substanzen > 1000 t/a (Tonnen per annum) registriert. Phase II wurde Ende 2013 abgeschlossen. Bis dahin musste die Registrierung aller Substanzen von 100-1000 t/a erfolgt sein.

Präventiver Brandschutz

- → Aktuellen Lageplan (Werk, Gebäude) vorhalten, in dem alle Druckgasbehälter eingetragen sind.
- → Bei der Erstellung und Überprüfung der Alarm- und Gefahrenabwehrpläne die vorhandenen Druckgasbehälter berücksichtigen.

Maßnahmen im Brandfall

- → Feuerwehr benachrichtigen.
- Druckgasbehälter aus dem brandgefährdeten Bereich entfernen, ohne sich selbst zu gefährden. Wenn das Entfernen aus dem brandgefährdeten Bereich nicht möglich ist, Druckgasbehälter durch Bespritzen mit Wasser aus geschützter Stellung kühlen.
- → Feuerwehr auf das Vorhandensein von Druckgasbehältern im Brandobjekt aufmerksam machen (siehe auch "Präventiver Brandschutz").

Notruf Feuerwehr 112

Wer ruft an?
Was ist passiert?
Wo ist etwas passiert?
Wie viele Verletzte sind dort?
Warten auf Rückfragen.

Befördern

Das innerbetriebliche Befördern von Druckgasbehältern sollte vorzugsweise mit dem Flaschenkarren oder im Falle von kleinen Behältern in geeigneten Trägern erfolgen. Weitere Informationen zum Transport von Gasflaschen auf dem Betriebsgelände sind aus dem Sicherheitshinweis "Sicherer Umgang mit Gasflaschen und Flaschenbündeln" zu ersehen. Für Auskünfte zum Befördern von Druckgasbehältern auf öffentlichen Straßen steht der Sicherheitshinweis "Transport von Gasbehältern mit Kraftfahrzeugen" zur Verfügung.

Lagern

- → Stehend lagern und gegen Umfallen und Herabfallen sichern. Besondere Maßnahmen sind nicht erforderlich, wenn die Gasflaschen durch ihre Bauart, durch die Art der Lagerung (z.B. in geschlossenen Paletten) oder durch die Aufstellung in größeren Gruppen ausreichend gesichert sind.
- → Nicht in Durchgängen, Fluren oder Treppenräumen lagern, damit Fluchtwege stets frei sind.
- → Kein Zusammenlagern mit z.B. brennbaren Stoffen wie Papier oder brennbaren Flüssigkeiten wie Benzin.
- → Bei Lagerung im Raum ist zwischen Gasflaschen mit brennbaren Gasen (z. B. Acetylen) und Flaschen mit brandfördernden Gasen (z. B. Sauerstoff) ein Abstand von 2 m einzuhalten, der aber mit Gasflaschen mit inerten Gasen (z. B. Stickstoff) besetzt werden darf. Lagerräume für Druckgasbehälter müssen ausreichend belüftet werden.
- → Um die Qualität von Behältern und Gas nicht zu beeinträchtigen, sollten Druckgasbehälter vor Witterungseinflüssen (Regen, Schnee) sowie vor Beschädigung und Verschmutzung geschützt werden. Eines Schutzes vor Sonnenbestrahlung bedarf es nicht.
- → In unmittelbarer Nähe zu Wärmequellen, z.B. Heizkörpern und Öfen, sollten Druckgasbehälter nicht aufgestellt werden. Der Abstand zu Heizkörpern muss so groß sein, das die Oberflächentemperatur von 50°C nicht überschritten wird.

Handhaben

- Druckgasbehälter dürfen ausschließlich von geschultem Fachpersonal gehandhabt werden. Zur Schulung stehen unsere Sicherheitshinweise in den Produkt- und Sicherheitsdatenblättern zur Verfügung. Diesen können beispielsweise physikalische und sicherheitstechnische Angaben zur Toxikologie und Ökologie entnommen werden. Zudem können Sie zur ausführlichen Schulung an einem LIPROTECT[®]-Sicherheitsseminar teilnehmen, welches bei Ihnen im Haus oder bei Linde stattfinden kann.
- → Druckgasbehälter sind stets gegen Umfallen zu sichern.
- → Aus Sicherheits- und Qualitätsgründen wird dringend davon abgeraten, Gas aus einem Druckgasbehälter in einen anderen umzufüllen.
- → An Verbrauchsstellen dürfen nur die für die ununterbrochene Durchführung der Arbeiten notwendigen Druckgasbehälter vorhanden sein.
- → Bevor Druckgasbehälter angeschlossen werden, muss sichergestellt sein, dass ein Rückströmen von einem Leitungssystem in die angeschlossene Gasflasche nicht möglich ist.
- → Sollte zum Entleeren von Druckgasbehältern mit verflüssigten Gasen eine Druckerhöhung durch Erwärmen notwendig sein, so dürfen die Behälter nur bis zu einer maximalen Temperatur von 50°C erwärmt werden. Die Erwärmung sollte mit Warmwasser, mit einer speziellen elektrischen Heizmatte oder mit Heißluft erfolgen, keinesfalls mit offener Flamme.
- → Gasflaschen mit verflüssigten Gasen müssen stehend entleert werden.
- Für die Entnahme des Prüfgases oder Reingases (Propan, Butan) aus verflüssigten Gasen gibt es zwei Möglichkeiten: Entweder aus einem aufrecht stehenden Druckgasbehälter mit Steigrohr oder aus einer Gasflasche, die mit Doppelventil ausgerüstet ist, wobei hier die Entnahme aus der Flüssig- oder Gasphase erfolgen kann. Bei unterschiedlichen Dampfdrücken der beteiligten Beimengungen in einem Prüfgas reichern sich die leichter flüchtigen in der Gasphase, die schwerer flüchtigen in der Flüssigphase an, d.h. die homogene Verteilung der Beimengungen in der Gasmenge ist während der Entnahme nicht mehr erfüllt. Folglich ändert sich die Zusammensetzung des Gemisches kontinuierlich bei der Gasentnahme, je nachdem ob aus der Gas- oder der Flüssigphase entnommen wird. Um diese Änderung so gering wie möglich zu halten, sollte die Entnahme mit Steigrohr und stehender Gasflasche erfolgen. Die dem Druckgasbehälter entnommene Flüssigphase kann direkt oder auch nach totaler Verdampfung weiter verwendet werden.

- → Nach Entfernen der Ventilverschlussmutter gilt: Verunreinigungen des Ventilanschlusses vermeiden und umgehend einen Druckminderer oder ein Flaschenanschlussventil anschließen. Druckminderer mit passenden Anschlüssen werden von Linde angeboten.
- Vor Öffnen des Flaschenventils muss das Handrad des Druckminderers durch Linksdrehung ganz herausgedreht sein, dann ist der Druckminderer geschlossen. Das Flaschenventil ruckfrei öffnen (bei Sauerstoffflaschen langsam öffnen). Nach einer Umdrehung des Handrades ist das Ventil vollständig geöffnet. Hierzu keine Gleit- und Schmiermittel sowie Werkzeuge benutzen.
- → Die Dichtheit des Anschlusses sollte mit geeigneten Methoden überprüft werden (z. B. Leckspray oder Helium-Lecktest).
- Handrad des Druckminderers langsam nach rechts drehen, bis der gewünschte Hinterdruck erreicht ist.
- → Bei Unterbrechung der Gasentnahme Flaschenventil schließen.
- Rückgabe der Druckgasbehälter mit geringem Überdruck. Hierdurch wird unter anderem sichergestellt, dass keine Fremdstoffe in den Druckgasbehälter eindringen können.
- → Druckgasbehälter mit offensichtlichen Mängeln müssen klar gekennzeichnet an das jeweilige Linde-Füllwerk zurückgesandt werden.

Wiederkehrende Prüfungen

Jeder Druckgasbehälter unterliegt gewissen Prüffristen. Die Einhaltung dieser Fristen wird von den Linde-Füllwerken überwacht. Aus Druckbehältern, deren Frist abgelaufen ist, darf weiterhin Gas entnommen werden. Das ist sicherheitstechnisch unbedenklich. Allerdings ist die Beförderung von Druckgasbehältern mit abgelaufener Prüffrist nur dann erlaubt, wenn sie zurück zu Linde gesandt und einer Prüfung zugeführt werden.

Standard-Druckgasbehälter. Orientiert am wirklichen Bedarf.

Linde bietet Ihnen ein breites Lieferprogramm an Standardbehältern, welches auf Ihre Anwendungen und Bedürfnisse ausgerichtet ist. Auch andere Druckgasbehälter können nach technischer und rechtlicher Prüfung für Sie befüllt werden.

Standard-Druckgasbehälter

Rauminhalt	Behälter-	Behälterart	Leergewicht	Länge inkl. Kappe	Außendurch-	Fülldruck/Prüf-	Bemerkungen
in Liter	werkstoff		komplett in kg*	in mm**	messer in mm	überdruck in bar	
1	Aluminium	HD	3,2	350	100	200/300	
1	Stahl	HD	2,15	395	83	200/300	
2	Aluminium	HD	4,7	460	118	200/300	
2	Stahl	HD	5,3	490	100	200/300	
7	Stahl	ND	4	300	200	21/32	
10	Aluminium	HD	11,5	1100	140	200/300	
10	Stahl	HD	16	970	140	200/300	
10	Stahl	HD	21	980	140	18/60	Acetylen
10	Stahl	HD	19	1030	140	150/225	K
10	Edelstahl	ND	21	560	219	40/60	
10	Edelstahl	HD	32	590	219	200/300	
20	Stahl	HD	26	950	204	200/300	
20	Stahl	HD	38	940	204	18/60	Acetylen
20	Edelstahl	ND	17	660	265	43/65	
27	Stahl	ND	12	485	300	21/32	
40	Aluminium	HD	45	1560	229	200/300	
40	Stahl	HD	48	1630	204	150/225	
40	Stahl	HD	60	1630	204	19/60	Acetylen
40	Stahl	HD	78	1730	204	150/225	K
40	Edelstahl	HD	81	1560	219	200/300	
47	Edelstahl	ND	50	1660	219	40/60	
50	Stahl	HD	67	1640	229	200/300	
50	Stahl	HD	93	1750	229	300/450	
50	Edelstahl	ND	31	1220	265	43/65	
79	Stahl	ND	35	1145	318	21/32	
12 x 40	Aluminium	BL	950	1842	760 x 965	200/300	
12 x 50	Stahl	BL	1057	1842	760 x 965	200/300	
12 x 50	Stahl	BL	1100	1842	760 x 965	300/450	

^{*} Im Leergewicht ist das Gewicht der porösen Masse und des Lösungsmittels eingeschlossen.

 $^{^{\}star\star}$ Abhängig von Baujahr und Lieferant sind Abweichungen in der Länge möglich.

Erläuterungen

Bemerkung

K = Für korrosive Gase und Gasgemische

Behälterart

HD = Hochdruckflasche, nahtlos gezogen

ND = Niederdruckflasche, geschweißt für verflüssigte Gase $(T_k \ge +70 \,^{\circ}\text{C})$

BL = Bündel aus 12 Hochdruckflaschen

Flaschenventil und Anschluss

Das Flaschenventil dient zum drucksicheren Abschließen des Gasinhalts. Es werden hauptsächlich drei Bauarten eingesetzt*:

- Für Gase in Qualitäten bis 5.0 ein bewährtes O-Ringventil. O-Ringventile haben eine große Spindelhubhöhe und sind deshalb für große Durchsätze geeignet. Sie besitzen ein Dichtungssystem, das die Handradbetätigung mit geringem Drehmoment bis zum maximalen Betriebsdruck erlaubt. Sie sind auch für raue Betriebsbedingungen ausgelegt. Die Dichtungswerkstoffe sind gasartspezifisch ausgewählt. Körpermaterial ist Messing (z. B. Werkstoffnummer 2.0540 nach DIN EN 12420).
- 2. Für Rein- und Prüfgase werden fast ausschließlich Membranventile eingesetzt. Membranventile zeichnen sich durch gute äußere und innere Dichtigkeit aus (Leckrate ≤ 10-7 mbar l/s). Dies wird durch Metallmembranen erreicht, die zwischen Oberspindel und Ventilkörper eingespannt sind und dadurch das Gehäuse metallisch abdichten. Körpermaterial ist je nach Werkstoffverträglichkeit Messing oder Edelstahl (z. B. Werkstoffnummer 1.4305 nach DIN 17440). Die gasseitige Membran ist aus Hastelloy® und der Ventilsitz aus PCTFE.
- 3. Bei Halbleiterprozessgasen kommt ein Membranventil zum Einsatz, bei dem die Membranen mit der Unterspindel verschweißt sind. Durch die mechanische Koppelung von Unterspindel und Handrad kann auf die Feder im Gasraum verzichtet werden. Durch diese Maßnahme wird ein Gasraum mit minimaler Oberfläche (= Adsorptionsfläche) erreicht. Dadurch erhöht sich auch die Dichtheit (Leckrate ≤ 10−9 mbar l/s). Die Formgebung des Gasraumes und das Fehlen einer Feder führen darüber hinaus zu einem wesentlich verbesserten Partikelverhalten. Körpermaterial ist 316 L (z. B. Werkstoffnummer 1.4404/35 nach DIN 17440). Beim Ventilseitenstutzengewinde ist, neben dem klassischen Anschluss nach DIN 477, auf Wunsch auch ein ganzmetallisch dichtender Anschluss, identisch mit den amerikanischen CGA-Anschlüssen Serie 630 und 710, erhältlich (= DISS).

^{*} Das Flaschenventil ist nicht zur Regelung der Gasentnahme geeignet, hierfür stehen Ihnen ausführliche Informationen in unserem Hardware-Katalog zur Verfügung.

Um Verwechslungen von Druckgasbehältern zu vermeiden, sind diese mit unterschiedlichen gasartspezifischen Ventilanschlüssen ausgestattet. Die Zuordnung der Anschlüsse zu den jeweiligen Gasen kann aus der folgenden Tabelle ersehen werden.

Gasflaschenventile

Gasegruppe		Seitenstutzengewinde	Anschluss-Nr.
DIN 477-1	Arsin, Bromethen, 1,3-Butadien, Butan, 1-Buten, 2-Buten (cis-/trans-),	W 21,80 x 1/14 LH	1
	Chlorethen, Chlormethan, Deuterium, Difluormethan (R 32), Dimethylamin,		
	Dimethylether, Disilan, Ethan, Ethen, Ethylenoxid, Fluormethan, German,		
	Isobutan, Isobuten, Methan, Methylamin, Phosphin, Propan, 1-Propin,		
	Propen, Silan, Trimethylamin, Wasserstoff		
	Butan, Isobutan, Propan (bis 33 Liter Rauminhalt)	W 21,80 x 1/14 LH	2
	Acetylen	Anschluss für Spannbügel	3
	Dichlorsilan, Kohlenmonoxid, Schwefelwasserstoff	1 LH	5
	Ammoniak, Argon, Helium, Helium-3, Hexafluorethan, Kohlendioxid,	W 21,80 x 1/14	6
	Krypton, Neon, Octafluorcyclobutan (R C318), Octafluorpropan (R 218),		
	Octafluortetrahydrofuran, R 125, R 134a, R 152a, R 227ea,		
	R 236fa, Schwefelhexafluorid, Tetrafluormethan (R 14),		
	Trifluormethan (R 23), Xenon		
	Schwefeldioxid	G5/8	7
	Bortrichlorid, Bortrifluorid, Brommethan, Bromwasserstoff, Chlor,	1	8
	Chlorwasserstoff, Fluor, Siliciumtetrafluorid, Stickstoffdioxid,		
	Stickstoffmonoxid, Stickstofftrifluorid		
	Sauerstoff, Prüfgas (mit Sauerstoff > 21 %)	G3/4	9
	Stickstoff	W 24,32 x 1/14	10
	Distickstoffmonoxid (Normalanschluss)	G3/8	11
	Distickstoffmonoxid (bis 3 Liter Rauminhalt)	G3/4 Innengewinde	12
	Prüfgas (mit Sauerstoff ≤ 21 %)	M 19 x 1,5 LH	14
DIN 477-5	Unbrennbare und ungiftige Gase, Fülldruck 300 bar	W 30 x 2*	54
	Brennbare Gase, Fülldruck 300 bar	W 30 x 2 LH	57
	Brandfördernde Gase, Fülldruck 300 bar	W 30 x 2*	59

 $^{^\}star$ Anschlüsse unterscheiden sich durch unterschiedliche Durchmesser-Stufungen.

Kleinbehälter. Bestehen jede Vielseitigkeitsprüfung.

In den meisten Industriebereichen wird heute eine Vielzahl an Analysengeräten benötigt. Spurenanalytik- und Monitoring-Techniken werden zur Messung und Überwachung von Umweltverschmutzungen eingesetzt oder zur Qualitätskontrolle und Prozesssteuerung. Zudem ist eine sichere und gesundheitlich unbedenkliche Arbeitsumgebung im Rahmen des Arbeitsschutzes in allen Industriebereichen mittlerweile Standard.

Gasdetektoren bzw. Gaswarneinrichtungen werden eingesetzt, um Arbeitnehmer vor gefährlichen Gasen und Dämpfen zu schützen. Damit diese Detektoren jederzeit zuverlässig arbeiten, müssen regelmäßig Tests durchgeführt werden. Aufgrund langer Wege und der hohen Anforderungen an die Mobilität sind große Gasflaschen in der Regel zu unhandlich. Insbesondere bei der Bereichsüberwachung sind Gasdetektoren zudem oft an schwer zugänglichen Orten platziert.

Mit dem Programm "Gase in Kleinbehältern" bietet Linde universelle Anwendungsmöglichkeiten überall dort, wo geringes Behältergewicht, mobile Einsetzbarkeit oder kleinste Gasmengen gefragt sind.

Folgende Typen stehen zur Verfügung:

- → ECOCYL[®]
- → HiQ® MAXICAN
- → HiQ[®] MINICAN
- → HiQ® MICROCAN
- → PLASTIGAS® Beutel

ECOCYL®

Wenn Mobilität entscheidet

Wir haben die ECOCYL® entwickelt, um Ihre Bedürfnisse zu erfüllen und zugleich den höchsten Sicherheitsanforderungen zu genügen. Marktübliche Gasflaschen und Hochdruckdosen sind im Betrieb ungeschützt, da die Flaschenkappe wegen des Anschlusses der Gasentnahmeeinrichtungen entfernt werden muss. Anders bei der ECOCYL®: Sie setzt sich aus einem wiederbefüllbaren Druckgasbehälter mit Ventil, integriertem Druckminderer und Durchflussmesser zusammen. Diese Entnahmeeinrichtungen sind vollständig im Schutzkäfig des Behälters integriert. Damit bieten wir Ihnen ein sicheres, einfach zu handhabendes und gebrauchsfertiges System. Sie brauchen nur das Flaschenventil zu öffnen und aus den voreingestellten Flussraten die geeignete auszuwählen.

Die Druckgasbehälter können mit praktischen Transportgurten versehen werden. In der ECOCYL® können unterschiedliche, verdichtete Gasgemische und Reingase bis 150 bar geliefert werden.

Technische Daten

→ Länge (mit Schutzkorb)

	<i>y</i> ,	
>	Außendurchmesser	95 mm
>	Rauminhalt	1 Liter
>	Leergewicht	2,4 kg
>	Fülldruck (maximal)	150 bar
>	Füllmenge (maximal)	150 Liter (von der Gasart abhängig)
>	Hinterdruck	3,8 bar
>	Hinterdruckanschluss	Kombi-Schlauchtülle ∅ 6 und 8 mm,
		Quick-Connector
>	Durchfluss	0 bis 8 Liter/Minute (variabel mit vor-
		eingestellten Werten 0; 0,25; 0,3; 0,5;
		1.0: 1.5: 2.5 und 8)

440 mm

Zehn Gründe für die Wahl von ECOCYL®

- → 50 % mehr Inhalt als die meisten Einwegbehälter
- → Optimale Wirtschaftlichkeit
- ∴
 Keine Entsorgungs- oder Lagerkosten für Leerbehälter
- → Umweltschonung durch Wiederbefüllbarkeit
- → Integrierter, variabel einstellbarer Durchflussregler
- → Kein zusätzlicher Druckminderer oder Durchflussmesser nötig
- → Chargenzertifikat (abhängig von der jeweiligen Gasart)
- → Schutzkäfig für Entnahmeventil und Armaturen
- → Deutliche Erhöhung der Sicherheit bei Bedienung und Gebrauch der Druckgasbehälter
- → Schultergurt für den praktischen Transport anschließbar

HiQ® MAXICAN

Gehaltvolles Leichtgewicht

Der handliche und flexible Einwegdruckgasbehälter HiQ® MAXICAN ist die optimale Lösung für Kalibrieraufgaben bei Ex-Schutz- und AGW-Detektoren (ehemals MAK-Detektoren). Dank des hohen Fülldrucks von 40 bar enthält HiQ® MAXICAN für einen Einwegbehälter eine große Gasmenge. Dieser Druckgasbehälter erfüllt die Anforderung nach einem leichten und handlichen Produkt, das mit 481 Gasinhalt einen vergleichsweise hohen Gasbedarf abdeckt und somit alternativ zur Mietflasche eingesetzt werden kann.

In der HiQ[®] MAXICAN können unterschiedliche, verdichtete Gasgemische und Reingase bis 40 bar geliefert werden.

Technische Daten

→ Länge (mit Ventil)
 → Außendurchmesser
 → Rauminhalt
 → Leergewicht (mit Ventil)
 → Fülldruck (maximal)

→ Füllmenge (maximal)
 → Flaschenanschluss
 48 Liter (abhängig von der Gasart)
 → Innengewinde M 19 x 1,5 RH

Armaturen für HiQ® MAXICAN

Kolbendruckminderer C 210 Maxi*

- → Material: Messing oberflächenbeschichtet
- → Gasreinheit bis 5.0, keine korrosiven Reingase und Gemische
- Ausgangsanschluss: Schlauchtülle für 4mm Schlauchinnendurchmesser

Membrandruckminderer C 260 Maxi*

- → Material: Messing verchromt
- → Gasreinheit bis 6.0
- → Ausgangsanschluss: Klemmringverschraubung 6 mm

Weitere Anschlüsse und Druckminderer sind auf Anfrage erhältlich.

^{*} Einstufig, mit Vor- und Hinterdruckmanometer (Hinterdruckbereich 0–6 bar)

HiQ® MINICAN

Kompakter Allrounder

Für die Kalibrierung und Überprüfung der Messgeräte und Detektoren sind geeignete Prüfgase notwendig. HiQ® MINICAN-Druckgasdosen sind Einwegbehälter aus Aluminium und werden bei einer Vielzahl von Anwendungen eingesetzt, z.B. zur Raumluftüberwachung und Abgaskontrolle, als Prüfgas oder in O₂-Messgeräten.

Die Dosen mit einem Fülldruck von 12 bar haben ein selbstschließendes, geschützt angebrachtes Ventil, das für alle Gasarten den gleichen Anschluss besitzt. Zur Gasentnahme und -weiterleitung dient ein eigenes, innerhalb des HiQ® MINICAN-Systems universell verwendbares Armaturenprogramm.

Die HiQ[®] MINICAN-Druckgasdosen können per Post verschickt werden, mit Ausnahme von Kohlenmonoxid. Auf diese Weise können sowohl der logistische Aufwand als auch die Transportkosten entscheidend gesenkt werden.

In der HiQ[®] MINICAN können unterschiedliche, verdichtete Gasgemische und Reingase bis 12 bar geliefert werden.

Technische Daten

→ Länge (einschließlich Kappe)
 → Außendurchmesser
 → Rauminhalt
 → Leergewicht
 → Fülldruck (maximal)
 275 mm
 80 mm
 1 Liter
 140 g
 12 bar

→ Flaschenanschluss Außengewinde 7/16"-28 UNEF

Armaturen für HiQ® MINICAN

- → Druckminderer mit Dosierventil mit und ohne Manometer
- → Feinregelventil mit und ohne Manometer sowie zusätzlicher Klemmringverschraubung für Glasrohr
- → Durchflussmengenmesser
- → Sprühdüse
- → Spritzenadapter

HiQ® MICROCAN

Kleine Flasche, großer Inhalt

In vielen Branchen und Anwendungen werden die einzelnen Komponenten im Zuge der Weiterentwicklung stetig kleiner. Das gilt auch für die Abmessungen von Brennstoffzellen und Analysengeräten wie z.B. Micro-GC. Benötigt wird daher eine maximale Gasmenge bei kleinstmöglichem Platzbedarf zur Versorgung von kleinen, tragbaren Analysengeräten, insbesondere auch für den Feldeinsatz, oder für kleine Stromverbraucher mittels Brennstoffzellen. Zudem soll die Gasversorgung ohne großen Platzverbrauch in möglichst viele Geräte und Anlagen integrierbar sein.

HiQ® MICROCAN ist eine Kleinsthochdruckflasche mit einem Fülldruck von maximal 200 bar und miniaturisierten Druckminderern. Im Vergleich zu üblichen 50-l-Hochdruckflaschen bietet sie also eine Miniaturisierung um den Faktor 250. Durch den hohen Fülldruck hat HiQ® MICROCAN mehr Gasinhalt als herkömmliche 1-l-Druckgasdosen mit 12 bar oder 34 bar, ist dabei aber um den Faktor 5 kleiner. Durch ihre kompakte Bauart ermöglicht sie präzises Arbeiten auf engstem Raum.

In der HiQ® MICROCAN können unterschiedliche, verdichtete Gasgemische und Reingase bis 200 bar geliefert werden.

Technische Daten am Beispiel der 0,2-l-Flasche

→ Länge (mit Ventil)
 → Außendurchmesser
 → Rauminhalt
 → Leergewicht (mit Ventil)
 → Fülldruck (maximal)

→ Füllmenge (maximal)
 → Flaschenanschluss
 40 Liter (abhängig von der Gasart)
 → Innengewinde M 19 x 1,5 LH

Weitere Flaschengrößen sind auf Anfrage erhältlich.

Armaturen für HiQ® MICROCAN

Kolbendruckminderer C 210 Micro*

- → Material: Messing oberflächenbeschichtet
- → Gasreinheit bis 5.0, keine korrosiven Reingase und Gemische
- Ausgangsanschluss: Schlauchtülle für 4mm Schlauchinnendurchmesser

Membrandruckminderer C 260 Micro*

- → Material: Messing verchromt
- → Gasreinheit bis 6.0
- → Ausgangsanschluss: Klemmringverschraubung 6 mm

Weitere Anschlüsse und Druckminderer sind auf Anfrage erhältlich.

* Einstufig, mit Vor- und Hinterdruckmanometer (Hinterdruckbereich 0–6 bar)

PLASTIGAS® Beutel

Analytik leicht gemacht

Das Entnahmesystem PLASTIGAS® von Linde kann in Laboren flexibel eingesetzt werden. Die Beutel eignen sich für die Entnahme, die Aufbewahrung und den Transport von Gasproben unter Atmosphärendruck. Die unkomplizierte Handhabung der Beutel ermöglicht einen Einsatz in einer Vielzahl von Anwendungsgebieten – von der Abgasanalyse im Rahmen des Umweltschutzes bis hin zur Überwachung von Arbeitsplatzkonzentrationen. Im Gegensatz zu Gasflaschen ist der Umgang mit den Beuteln wesentlich einfacher, da bei der Entnahme kein Hochdruck vorhanden sein muss.

Die hochwertige Machart der Beutel gewährleistet Ihnen zuverlässige und präzise Analysenergebnisse, denn die mehrfach kunststoffkaschierte Aluminiumfolie ist auf der Innenseite mit Polyethylen beschichtet und die Nähte sind thermoplastisch verschweißt. Daher sind die Beutel gasdicht, flexibel – jedoch nicht dehnbar – und temperaturfest bis 50°C.

Gasentnahme und Befüllung

Für die Füllung des Beutels und die Probenentnahme stehen Ihnen drei Möglichkeiten zur Verfügung:

- → Septum mit Kanüle oder gasdichter Spritze
- → Tülle mit Blasenschlauch
- → Ventil mit Schlauchtülle

Durch das Zusammendrücken des Beutels wird manuell der Überdruck erzeugt, der für die Gasentnahme nötig ist.

Verschließen

Um einen gasdichten Sitz der aufgeschnittenen Tülle zu erreichen, besitzt der Blasenschlauch eine konische Verdickung, die sogenannte "Blase". Nach der Gasentnahme reicht es aus, die Tülle umzuknicken und diese z.B. mit einer Büroklammer oder einem Klebeband zu sichern.

Ausführungen von PLASTIGAS®

Ausführung	Rauminhalt ca. Liter	Abmessungen ca. mm	Stückzahl pro VE	Zubehör
Mit Tülle für Blasenschlauch	2,5	470 x 200	3	Blasenschlauch bitte separat bestellen.
Mit Tülle für Blasenschlauch	5,5	800 x 200	3	Blasenschlauch bitte separat bestellen.
Mit Tülle für Blasenschlauch	22	800 x 400	3	Blasenschlauch bitte separat bestellen.
Mit Ventil, Schlauchtülle 5 mm	10	400 x 400	3	
Mit Ventil, Schlauchtülle 5 mm	27	800 x 400	3	
Blasenschlauch			1	

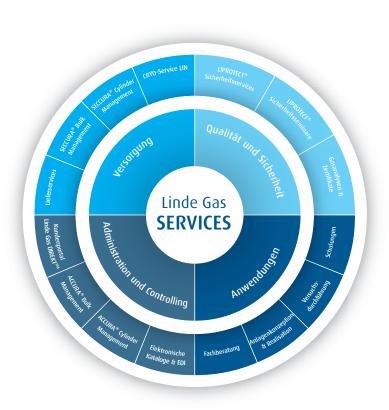
Fässer. Perfekt aufgestellt für große Mengen.

Wenn Sie einen besonders hohen Gasbedarf haben, können wir Ihnen Füllungen in Fässern anbieten. Linde liefert unter Druck verflüssigte Gase mit $T_k \geq +70\,^{\circ}\text{C}$ in Stahlfässern im Stahl- oder Sicherheitsrahmen. Die Rahmen sind mit Staplertaschen ausgerüstet, die das sichere Befördern von Fässern mit dem Gabelstapler ermöglichen. Dies gilt jedoch nur, wenn der Gabelstapler für die Gewichtsklasse des Fasses ausgelegt ist.

Standard-Lieferprogramm Fässer

Produkt	Rauminhalt (Liter)	Dampfdruck (bei 20°C bar)	Füllmenge (kg)	Gesamtgewicht* mit Füllung (kg)	Maße (L x B x H)	Behälterart stehend	Behälterart liegend
Ammoniak	900	8,59	475	1145	2400 x 1000 x 1030*		mit Rahmen
Chlor	420	6,88	500	888	1553 x 700 x 940		ohne Rahmen
	825	6,88	1000	1650	1100 x 1100 x 1790*	mit Rahmen	
Chlorwasser-	800	42,6	590	2550	1100 x 1100 x 1900*	mit Rahmen	
stoff	950	42,6	550	1820	2210 x 960 x 960		ohne Rahmen
Schwefeldioxid	450	3,26	550	780	1410 x 780 x 780		ohne Rahmen
	890	3,26	1100	1640	2350 x 900 x 900		ohne Rahmen

^{*} Maße inklusive Rahmen


Unsere Services. Gewinnen Sie Freiräume für Ihre Kernaufgaben.

Anspruchsvolle Unternehmen verlangen von ihren Lieferanten heute mehr als nur hochqualitative Produkte, sondern zusätzlich ein umfassendes, auf ihre individuellen Anforderungen angepasstes Serviceangebot.

Unsere Services reichen von der anwendungs- und branchenspezifischen Fachberatung durch unsere Spezialisten über die Konzeption Ihrer individuellen Gasversorgungsanlage bis hin zu auf Ihre Bedürfnisse abgestimmte Dienstleistungen in den Bereichen Administration und Controlling, Anwendungen, Versorgung sowie Qualität und Sicherheit.

Nutzen Sie unsere Branchenerfahrung und unser Know-how rund um Gase, damit Sie sich auf das Wesentliche konzentrieren können: Ihr Kerngeschäft.

Im Nachfolgenden stellen wir Ihnen die Dienstleistungen vor, die insbesondere für Spezialgaseanwendungen von hohem Nutzen sind. Über alle weiteren Services informiert Sie gern Ihr Kundenbetreuer von Linde Gas. Auf unserer Homepage www.linde-gas.de/services finden Sie selbstverständlich auch umfassende Informationen zu unseren Dienstleistungen.

Administration und Controlling. Online-Tools eröffnen Überblick und Zeitgewinn.

Unser Anliegen ist es, die Handhabung aller Prozesse vom Einkauf bis zur Bezahlung für Sie so einfach und übersichtlich wie möglich zu gestalten. Wir helfen Ihnen dabei Zeit zu sparen, die Sie zum Beispiel für die Überprüfung der Füllstände Ihrer Druckgasbehälter oder die Korrektur von Übertragungsfehlern verwenden müssten. Mit den intelligenten Online-Tools von Linde sind Sie mit einem Blick auf dem aktuellsten Stand und können jederzeit agieren. Transparenz, die sich für Sie auszahlt.

Gasbehältermanagement mit ACCURA® Cylinder Management

Sie möchten ...

- Ihren Behälterbestand im Unternehmen und somit Kosten optimieren sowie die Versorgungssicherheit im Unternehmen erhöhen?
- die Mietkosten verursacherbezogen auf Kostenstellen verrechnen und so gleichzeitig mehr Kostenbewusstsein im Unternehmen schaffen?
- jederzeit auf die Prüfgas-Analysenzertifikate und -daten zugreifen?
- jeden Druckgasbehälter rückverfolgen können und so Chargen und Stabilitätsdaten im Blick haben?

ACCURA® Cylinder Management ermöglicht Ihnen jederzeit einen Einblick in Ihre aktuellen Behälterbestände pro Abladestelle inklusive spezifischer Behälterinformationen vom Barcode über die Materialbezeichnung und -nummer bis zum Prüfgas-Analysenzertifikat. Ferner sind Auswertungen zum Stabilitätsablauf der Prüfgase, Mindest- und Langzeitbestandslisten etc. verfügbar.

ACCURA® Cylinder Management Professional verschafft Ihnen zusätzlich den Überblick hinsichtlich der unternehmensinternen Behälterverteilung. Am PC bzw. per Barcodescanner lassen sich Behälterstandorte und Verweildauer der Druckgasbehälter an den Verbrauchsstellen dokumentieren. Somit können Prozesse leicht analysiert und optimiert werden.

ACCURA® ist per Standard-Internetbrowser mit individuellen Zugangsdaten nutzbar.

Linde Gas DIREKT™

Sie interessieren sich für ...

- · Informationen zur Handhabung eines Gases?
- einen elektronischen Zugriff auf Ihre Belege rund um die Uhr?
- die Rückverfolgbarkeit von Belieferungsvorgängen und Flaschenbeständen?

Das Kundenportal Linde Gas DIREKTTM bietet Ihnen nach kostenfreier Registrierung Zugang zu aktuellen Sicherheitsdatenblättern, grundlegenden Sicherheits- und Transporthinweisen, Unfallmerkblättern, Beförderungspapieren sowie Zertifikaten und Konformitätserklärungen. Dieser Basisbereich kann von allen Interessenten genutzt werden.

Falls Sie bereits Kunde von Linde sind, steht Ihnen zusätzlich der gebührenfreie Bereich "Premium Services" zur Verfügung. Dort sind archivierte Rechnungen und Lieferscheine sowie Informationen zu offenen Posten für Sie hinterlegt. Im Premium-Bereich kann zudem die Anmeldung für den Erhalt von elektronischen Rechnungen erfolgen, wodurch Ihnen zukünftig alle Rechnungen als PDF-Dateien zugeschickt werden. Ferner ist der Zugriff auf Ihre individuelle Bestellhistorie möglich.

Im integrierten Webshop können Sie nach Registrierung unabhängig von unseren Geschäftszeiten Produkte aus dem Standardsortiment bestellen.

Registrieren Sie sich jetzt: www.linde-gas.de/direkt

Elektronischer Katalog

Sie möchten ...

- · maßgeschneiderte Bestellkataloge erhalten?
- · den Überblick über Ihr aktuelles Bestellsortiment behalten?
- Ihren Bestell- und Genehmigungsprozess transparenter gestalten und beschleunigen?

Wenn Sie über ein eigenes Warenwirtschaftssystem und einen standardisierten, wiederkehrenden Bedarf an Flaschen- und Bündelgasen verfügen, stellen wir auf Wunsch einen individualisierten elektronischen Katalog für Sie zusammen, der Ihnen automatische Bestellprozesse ermöglicht.

Neben Zusatzinformationen wie Bilder, Sicherheits- und Produktdatenblätter sind Ihre aktuellen Produktpreise sowie Ihre individuellen Produktlieferzeiten im elektronischen Katalog gepflegt. Diese personalisierten Kataloge können für Warenwirtschaftssysteme bereitgestellt oder über elektronische Marktplätze angebunden werden. Dabei werden Standardkatalogformate (BMEcat) und Standardklassifikationssysteme (eClass, UNSPSC) genutzt.

EDI (Electronic Data Interchange)

Ihr Ziel ist es, ...

- die Produktivität Ihres Unternehmens zu steigern, indem Sie Übertragungsfehlern vorbeugen?
- Prozesse innerhalb Ihrer Buchhaltung zu beschleunigen?
- die Archivierung von Bestellungen und Lieferscheinen fehlerfrei und übersichtlicher zu gestalten?

Die Nutzung des Electronic Data Interchange (EDI) ermöglicht Ihnen den vollautomatischen Datenaustausch für die Abwicklung Ihrer Geschäftsprozesse. Geschäftsbelege wie Bestellungen, Lieferscheine und Rechnungen werden im EDIFACT-Format zwischen Ihrem System und dem System von Linde ausgetauscht. Dabei reduzieren sich die Kosten für das Sammeln, Verteilen und Archivieren von Dokumenten, da die Mehrfacherfassung von Auftragsdaten entfällt. Interne Abläufe werden durch direkte Übernahme der Daten in Ihr System und 24-Stunden-Übertragung beschleunigt. Zudem werden durch den Wegfall manueller Datenerfassung Fehler vermieden.

Anwendungen. Anwendungstechnisches Know-how für optimierte Anlagen.

Mit dem individuellen, verfahrenstechnischen Know-how unserer Anwendungsingenieure unterstützen wir Sie bei allen Fragen rund um Ihre Gasversorgung und die Optimierung Ihrer damit verbundenen Prozesse. In enger Zusammenarbeit mit Ihnen erarbeiten wir die für Ihre Gaseanwendung und Problemstellung passende Lösung. Auch bei der Versorgung mit Spezialgasen bieten wir Ihnen zuverlässige Beratung und kompetente Unterstützung an. Entsprechend Ihrer Anwendung entwickeln wir das für Sie passende Versorgungskonzept und machen Sie mit dem korrekten und sicheren Umgang mit Ihrer Versorgungsanlage vertraut. Das fundierte Wissen unserer Experten und ihre jahrelange Erfahrung im Umgang mit Gasen machen sie zu einem starken, vertrauensvollen Partner an Ihrer Seite.

Armaturen für jede Anwendung

Sie benötigen fachmännische Unterstützung, denn ...

- Sie haben eine neue Anwendung, für die Sie eine geeignete Gasentnahmeeinrichtung brauchen?
- Ihre Armaturen sind in die Jahre gekommen und Sie möchten eine Beratung in Anspruch nehmen, die Sie über den neuesten Stand der Technik informiert?
- Sie sind nicht sicher, ob die eingesetzten Druckminderer zu Ihrer Anwendung und Gasqualität passen?

Unsere Experten nehmen sich gerne Zeit, um Sie zu beraten. Wir können Ihnen für Ihre Anwendung das passende Konzept für die Gasentnahme liefern. Hierbei können wir Ihnen standardisierte Armaturen aus unseren beiden Qualitätslinien REDLINE® und BASELINE® und Armaturen für spezielle Anwendungen anbieten.

REDLINE®

REDLINE® Armaturen belegen in der Welt der Spezialgasearmaturen den ersten Platz. Sie gewährleisten Top-Qualität, Langlebigkeit sowie Zuverlässigkeit und sind universell einsetzbar. Die Bandbreite des Einsatzes reicht von sensibelsten Anwendungen in Forschung und Entwicklung bis zur Dauerbelastung in den verschiedensten industriellen

Produktionsprozessen. Das REDLINE® Armaturenprogramm besteht aus Flaschendruckminderern für kurzzeitige Einsätze sowie aus Stations-, Batterie- und Entnahmedruckminderern für die zentrale Gasversorgung.

BASELINE®

BASELINE® Druckminderer ermöglichen den Einstieg in die Welt der Spezialgasearmaturen zu einem vernünftigen Preis. Typische Anwendungen sind die Versorgung von Analysengeräten mit Prüf- und Betriebsgasen in Forschung und Entwicklung sowie allgemeine Laboranwendungen. Die Flaschendruckminderer werden bevorzugt bei dezentraler Gasversorgung und kurzzeitiger Entnahme eingesetzt.

Armaturen für spezielle Anwendungen

Die Armaturenbaureihen REDLINE® und BASELINE® wurden für die überwiegend vorkommenden Anwendungen für Rein- und Prüfgase entwickelt. Darüber hinaus gibt es jedoch Anwendungen, die speziellere Anforderungen an die Armaturen stellen, wie z.B. Regelungen im Unterdruckbereich, Regelungen von toxischen und korrosiven Gasen oder besonders kompakte Bauweisen. Für all diese Anforderungen hat Linde Lösungen parat.

Detaillierte Informationen finden Sie in unserem Hardware-Katalog für Spezialgase.

Individuelle Versorgungsanlagen

Sie haben Interesse an ...

- einer Versorgungsanlage für Spezialgase, die speziell auf Ihre Bedürfnisse und Ihre Anwendung zugeschnitten ist?
- einer sicheren und vorschriftenkonformen Versorgungsanlage für Spezialgase?
- einer Versorgungsanlage, die Ihnen die notwendige Prozesssicherheit garantiert?
- der Nutzung eines neuen Spezialgases mit kritischen Eigenschaften und benötigen dafür eine neue Versorgungsanlage?

Linde plant und erstellt komplette Versorgungssysteme. Diese können als Standardanlagen für häufig anzutreffende, gleichartige Anwendungen oder als maßgeschneiderte Lösungen für spezielle Versorgungsaufgaben ausgeführt sein.

Standardanlagen

Ein Beispiel für eine bewährte Standardanlage ist die zentrale Gasversorgung von Gaschromatographen, unter anderem auch für die ECD-Analytik. ECD-Analytik wird eingesetzt, wenn Spuren von Halogenverbindungen gemessen werden sollen. In der Gasversorgungseinrichtung dürfen deshalb nur Werkstoffe verwendet werden, die mit Sicherheit frei von Halogenverbindungen sind. Außerdem muss sichergestellt sein, dass für Reinigungsschritte im Laufe der Fertigung und Montage der einzelnen Bauteile nur FCKW-freie Reinigungsmittel verwendet werden.

Die Gasversorgung für Excimerlaser ist ein weiteres Beispiel einer Standardanlage. Bei Excimergasen werden Betriebsgase mit Anteilen von Fluor oder Chlorwasserstoff eingesetzt. Diese toxischen und korrosiven Bestandteile erfordern eine Konzeption der Versorgungsanlage, die der Werkstoffverträglichkeit und der Sicherheitstechnik in besonderem Maße Rechnung trägt.

Maßgeschneiderte Versorgungssysteme

Unterschiedlichste Prozesse aus verschiedensten Branchen erfordern in der Regel Gasversorgungssysteme, die auf die jeweiligen Anwendungen zugeschnitten sind. Dabei kann es sich beispielsweise um eine Fassversorgung für hochkorrosive Gase wie Chlor oder Chlorwasserstoff handeln. Aufgrund der hohen Korrosivität und Toxizität dieser Gase muss das System optimal ausgelegt sein. Neben der reinen Arma-

turenauswahl steht hier auch die Funktionalität der Gasversorgung im Fokus. Über automatisierte Spülprozesse und die Führung des Bedieners über Touchscreen-Monitore wird eine Reproduzierbarkeit geschaffen, mit der ein Optimum an Anlagenverfügbarkeit und Prozesssicherheit erreicht wird.

Hohe Anforderungen werden auch an Gasversorgungen gestellt, die selbstentzündliche Gase wie z.B. Silan enthalten. Planung und Ausführung derartiger Systeme erfordern ein Höchstmaß an Kompetenz und spezifischem Know-how. Linde besitzt diese Kompetenzen. Unsere Ingenieurabteilung erstellt maßgeschneiderte Anlagen zur Lösung von solch kritischen Versorgungsaufgaben.

Unsere Experten nehmen sich gerne Zeit, um Sie zu beraten. Wir können Ihnen für jedes Gas das passende Anlagenkonzept liefern. Weitere Informationen finden Sie in unserem Hardware-Katalog für Spezialgase.

Versorgung. Kompetente Lösungen für alle Versorgungsaufgaben.

Linde Gas verfügt über ein dichtes Liefernetz im In- und Ausland sowie eine effiziente Füllwerkestruktur für eine reibungslose und zuverlässige Gasversorgung. Mit zwei hochspezialisierten Füllwerken für Spezialgase in Deutschland sind wir in der Lage, nicht nur unsere Kunden im Inland, sondern auch im Ausland sicher mit Gas zu versorgen. Denn in Ländern, in denen Linde Gas durch keine eigene Landesgesellschaft vertreten ist, können sämtliche Gase durch unseren Export-Service geliefert werden. Vertrauen Sie auf unsere jahrzehntelange Erfahrung.

Export

Sie verfügen über ...

- Kunden im Ausland, denen Sie weltweit die gleiche Qualität Ihrer Produkte und Dienstleistungen bereitstellen möchten?
- keine Kapazitäten oder Erfahrung, um den Export der von Ihnen benötigten Gase ins Ausland selbst vorzunehmen?

Für die Erschließung neuer Märkte ist es oft wichtig, einen erfahrenen Partner an seiner Seite zu haben, der die produktspezifischen Anforderungen und Fallstricke beim Gang ins Ausland kennt, um kostspielige Fehler und Reibungsverluste zu vermeiden.

Wir unterstützen Sie gerne bei der erfolgreichen Geschäftsabwicklung im Ausland. Sofern keine Exportbeschränkungen vorliegen, stellt Ihnen Linde Gas Deutschland in Zusammenarbeit mit den eigenen Landesgesellschaften gerne ein breites Portfolio an Gasen weltweit bereit.

Wir übernehmen für Sie:

- → Überprüfung der zoll- und steuerrechtlichen Vorgaben sowie deren Einhaltung
- → Erstellung und Beschaffung aller erforderlichen Dokumente wie Ausfuhrgenehmigungen und Ursprungszeugnisse
- → Organisation der notwendigen Transporte (See-, Luft-, Lkw-Transporte)
- → Komplette Export- und Versandabwicklung

Qualität und Sicherheit. Für perfekte Arbeitsund Produktionsbedingungen.

Der Gesetzgeber legt in der BetrSichV zugrunde, dass jedes Unternehmen die Sorgfaltspflicht übernehmen muss, um Gefahren für seine Mitarbeiter präzise einzuschätzen und auf ein Minimum zu reduzieren. Für die Erfüllung dieser Forderungen ist umfangreiches Fachwissen hinsichtlich der Prüfungsstandards sowie der aktuellen juristisch-technischen Zusammenhänge nötig. Linde Gas hat, basierend auf den gesetzlichen Vorgaben, ein Servicekonzept entwickelt, das Sie tagtäglich dabei unterstützt, den Gesetzesauflagen nachzukommen und zugleich Ihr Kerngeschäft im Fokus zu behalten. Darüber hinaus bieten wir Ihnen durch unseren Gasanalysenservice und unsere Entsorgungsmöglichkeiten weitere wichtige Services, um Qualität und Sicherheit in Ihrem Betrieb zu unterstützen.

LIPROTECT® Services

Sie benötigen Unterstützung bei der ...

- Erfüllung der zahlreichen Sicherheitsbestimmungen, die für Ihre Gaseanwendungen relevant sind?
- · Unterweisung Ihrer Mitarbeiter im Umgang mit Gasen?
- Überprüfung und Wartung Ihrer Anlage in Bezug auf aktuell vorgeschriebene Standards?
- Feststellung und Beurteilung von Gefährdungen an Ihren Arbeitsplätzen?
- Ermittlung von Prüffristen und Maßnahmen zum Betreiben Ihrer überwachungsbedürftigen Anlagen?

Unser Sicherheitsprogramm LIPROTECT® bündelt das erforderliche Know-how und alle notwendigen Maßnahmen zur genauen Umsetzung der Betriebssicherheitsverordnung in kompakten Modulen. Damit können Sie unabhängig vom Umfang Ihres Gasversorgungssystems Ihren Betreiberpflichten gezielt nachkommen.

Die Gesetzesvorgaben für Betreiber von Gasversorgungsanlagen sind zahlreich und umfangreich. Linde steht Ihnen bei der Erfüllung Ihrer gesetzlichen Vorschriften gerne zur Seite.

Wartung

Wir führen gemäß § 3 und 10 BetrSichV periodische Wartungen an Ihren Gasversorgungsanlagen durch, die laut § 11 BetrSichV von einer "befähigten Person" zu erfolgen haben. Diese regelmäßigen Prüfungen tragen maßgeblich zur Sicherstellung der Gasqualität an der Bedarfsstelle bei.

Gefährdungsbeurteilung

Wir erstellen eine präzise Gefährdungsbeurteilung nach § 3 BetrSichV, § 5 ArbSchG, § 7 GefStoffV, in der alle von Ihrer Gasversorgungsanlage ausgehenden Gefahrenpotenziale aufgeführt und bewertet sind. Dementsprechend werden Sicherheitsmaßnahmen definiert und Prüffristen festgelegt.

Zustands- und Konformitätsprüfung

Wir stellen in einer umfassenden Zustands- und Konformitätsprüfung fest, ob Ihre Arbeitsmittel für die Tätigkeiten und Bedingungen am Arbeitsplatz geeignet sind, sich auf dem Stand der Technik befinden und den geltenden Rechtsvorschriften gemäß § 4 und § 7 der GefStoffV entsprechen.

Sicherheitsseminare

Wir bieten Ihnen Sicherheitsseminare an, welche Sie und Ihre Mitarbeiter im richtigen und sicheren Umgang mit Gasen und dem sicheren Betreiben von Gasanlagen schulen. Dabei gehen wir auf die Bedürfnisse unterschiedlicher Zielgruppen ein. Teil des Angebots ist z.B. die "Fachschulung Befähigte Person – Spezialgase in Forschung, Labor und Analytik". Unsere Seminare können bei Linde, aber auch bei Ihnen im Haus stattfinden. Als Teilnahmebestätigung erhalten Ihre Mitarbeiter ein Zertifikat, welches von allen Berufsgenossenschaften als Unterweisungsdokument akzeptiert wird.

Das aktuelle Angebot sowie weitere Informationen finden Sie unter www.liprotect.de.

Entsorgung

Sie haben Bedarf an ...

- einer risikolosen, fachgerechten und umweltfreundlichen Entsorgung Ihrer Druckgasbehälter?
- einer sicheren, technisch sachgerechten und umweltverträglichen Entsorgung von korrodierten oder brandgeschädigten Druckgasbehältern?

Das Entsorgungszentrum in Unterschleißheim verfügt über die notwendigen Anlagen, eine aufwendige Sicherheitsinfrastruktur und erfahrenes, speziell ausgebildetes Personal, um die ökologisch einwandfreie und gesetzeskonforme Entsorgung einer Vielzahl von Gasen zu gewährleisten. Linde besitzt die hierfür notwendigen Bescheinigungen und Genehmigungen, die die gegenwärtige Vorschriftenlage erfordert:

- → Genehmigung für die Errichtung und den Betrieb einer Restgas-Entsorgungsanlage nach Bundes-Immissionsschutzgesetz (BlmschG)
- → Sammel- und Transportgenehmigung gemäß § 54, Abs. 1 Kreislaufwirtschafts- und Abfallgesetz (KrW/AbfG)
- → Sammelentsorgungsnachweis
- → ADR-Bescheinigung zur Beförderung gefährlicher Güter

Im Notfall, bei stark korrodierten, undichten oder brandgeschädigten Flaschen sowie defekten Ventilen, schickt Ihnen Linde Spezialisten, die die beschädigten Behälter aufgrund ihres Fachwissens und mittels umfangreicher technischer Ausrüstung sicher bergen können.

Gasanalysenservice

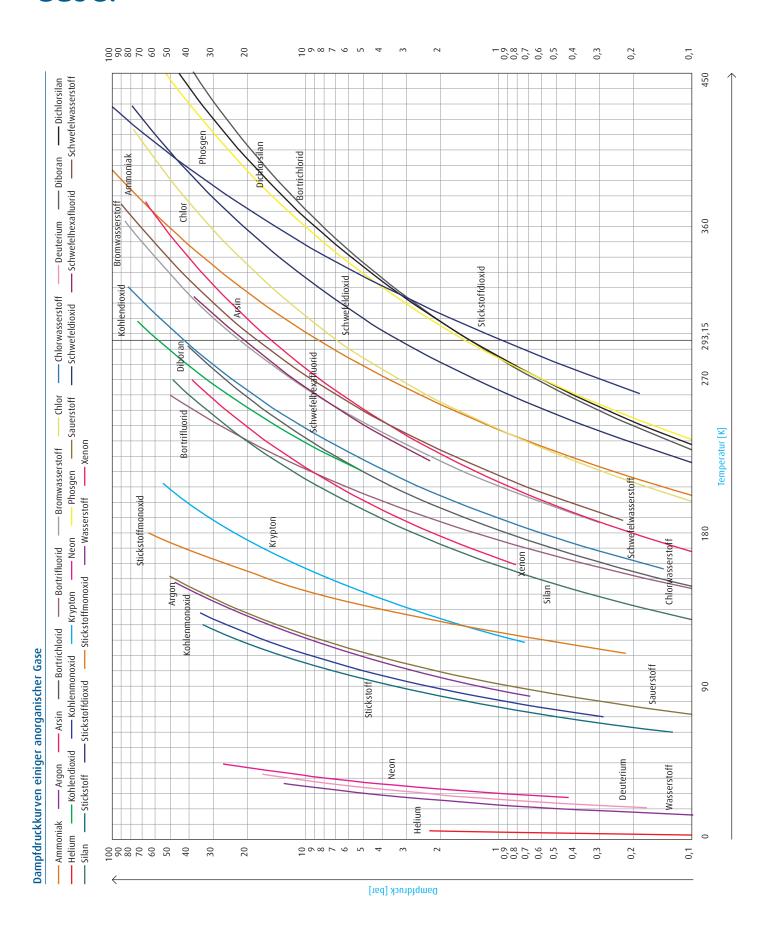
Sie sind mit folgenden Fragestellungen konfrontiert und ...

- vermuten Verunreinigungen in Ihrer Gasversorgung oder Ihre Gasversorgung am Point-of-Use muss einmalig oder dauerhaft qualifiziert werden?
- haben eine unbekannte Gasprobe oder wollen den Inhalt einer Gasflasche kontrollieren oder n\u00e4her spezifizieren?
- · denken über eine Nachreinigung Ihrer Gasversorgung nach?

Die Zentralanalytik mit Sitz in Unterschleißheim ist ein von der DAkkS (Deutscher Akkreditierungsdienst) nach DIN EN ISO/IEC 17025 zertifiziertes Labor. Es kommen validierte Messverfahren zum Einsatz sowie meist auf internationale Normale rückführbare Kalibriergase, um die gefundenen Messwerte mit einer möglichst niedrigen Messunsicherheit zertifizieren zu können. Dieser hohe Qualitätsstandard unserer Analysen gibt Ihnen Sicherheit und bietet ein hohes Maß an Verlässlichkeit. Hochqualifiziertes und geschultes Personal steht Ihnen für folgende Dienstleistungen zur Verfügung:

- Einsatz mobiler Gasanalysensysteme bei der Vor-Ort-Analyse (Mobilab)
- → Probennahme über speziell vorbehandelte Probennahmebehälter
- → Analysen von Gasproben in unserem Prüf- und Kalibrierlabor
- Bau von Monitoringsystemen zur Überwachung Ihrer Reinstgasversorgung und Beratung bei der Installation von Gasreinigern

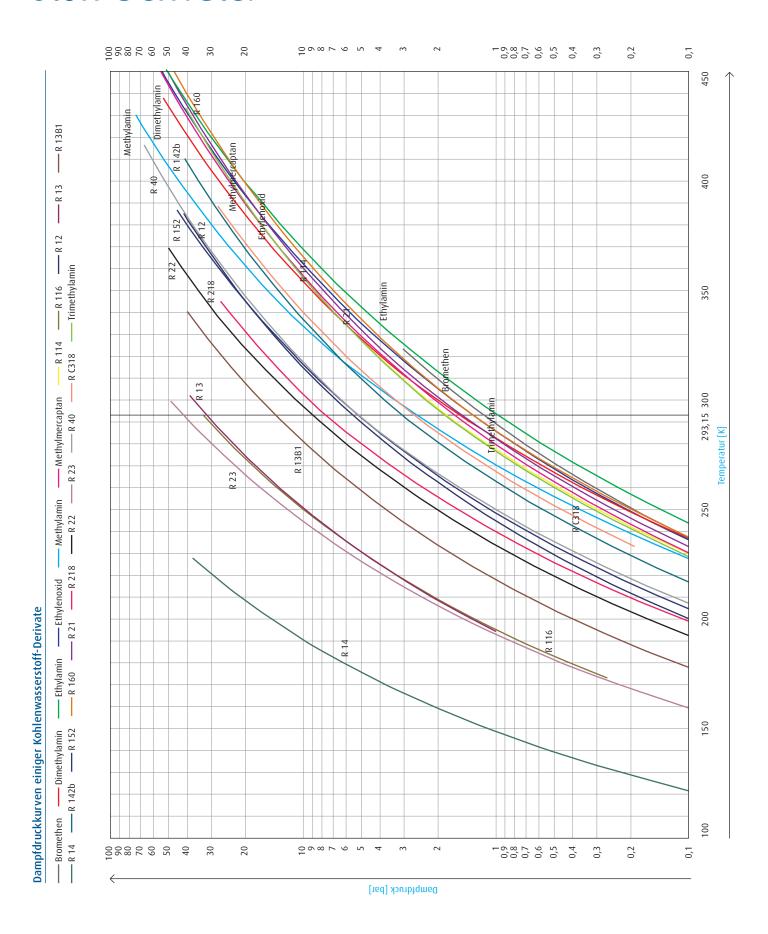
Tabellen & Diagramme.


Taupunkt und Wassergehalt von Gasen

Der Wassergehalt von Gasen kann sowohl in Stoffmengenanteilen als auch durch den Taupunkt der Gase angegeben werden. Die nachfolgende Tabelle enthält die jeweiligen Umrechnungszahlen.


Umrechnung von Taupunkt und Wassergehalt

Taupunkt (bei 1,013 bar)	wassergehalt	(bei 1,013 bar)	Taupunkt (bei 1,013 bar)	wassergehalt	(bei 1,013 bar)
°C	ppm	mg/m³	°C	ppm	mg/m³
-90	0,092	0,071	-34	246	189
-88	0,134	0,103	-32	340	261
-86	0,184	0,141	-30	376	289
-84	0,263	0,202	-28	462	354
-82	0,389	0,293	-26	566	435
-80	0,526	0,404	-24	691	531
-78	0,747	0,574	-22	841	646
-76	1,01	0,776	-20	1020	783
-74	1,38	1,06	-18	1230	945
-72	1,88	1,44	-16	1498	1146
-70	2,55	1,96	-14	1790	1375
-68	3,44	2,64	-12	2140	1640
-66	4,60	3,53	-10	2560	1965
-64	6,10	4,68	-8	3060	2350
-62	8,07	6,20	-6	3640	2800
-60	10,6	8,15	-4	4320	3320
-58	14,0	10,8	-2	5100	3920
-56	18,3	14,1	0	6020	4620
-54	23,4	18,0	2	6953	5590
-52	31,1	23,9	4	8022	6450
-50	39,4	30,2	6	9216	7410
-48	49,7	38,2	8	10584	8510
-46	63,2	48,5	10	12114	9740
-44	80,0	61,5	12	13806	11100
-42	101,0	77,6	14	15796	12700
-40	127	97,5	16	17885	14400
-38	159	122	18	20396	16400
-36	198	<u></u>	20	23020	18500


Dampfdruckkurven einiger anorganischer Gase.

Dampfdruckkurven einiger Kohlenwasserstoffe.

Dampfdruckkurven einiger Kohlenwasserstoff-Derivate.

Physikalische Daten.

Physikalische Daten ausgewählter Produkte

Gas	Chem. Zeichen	Molare Masse	Tripel- bz (bei 1,013	w. Schmelz _l 3 bar)	ounkt (*)		Siedepun (bei 1,013			
Bezeichnung des Gases			Temperat	ur	Dampf- druck	Schmelz- wärme	Temperat	ur	Verdampf wärme (mit ** im Normzusta	
		g/mol	K	°C	bar	kJ/kg	K	°C	kJ/kg	kJ/m³**
Acetylen	C ₂ H ₂	26,038	192,35	-80,8	1,282	96,46	189,12 SublTemp.	-84,03 SublTemp.	801,9	942,0 SublWärme
Ammoniak	NH ₃	17,03	195,41	-77,74	0,0607	331,6	239,75	-33,4	1371,2	1057,7
Argon	Ar	39,948	83,78	-189,37	0,687	29,3	87,29	-185,86	160,81	286,82
Arsin	AsH ₃	77,95	156,15	-117	0,03	15,38	210,67	-62,48	214,3	_
Bortrichlorid	BCl ₃	117,17	165,65	-107,5	< 0,001	17,9	285,65	12,5	203,48	entfällt
Bortrifluorid	BF ₃	67,805	144,45	-128,7	0,07	62,112	172,85	-100,3	278,8	839,3
Bromethen	C ₂ H ₃ Br	106,955	135,15	-138	< 0,001	215,2	288,95	15,8	242,8	entfällt
Brommethan R 40B1	CH ₃ Br	94,939	179,49	-93,66	0,002	62,74	276,71	3,56	252,05	entfällt
Bromtrifluormethan R 13B1	CBrF ₃	148,93	*105,37	*-167,78			215,35	-57,8	121,42	864,5
Bromwasserstoff	HBr	80,912	186,29	-86,86	0,299	35,4	206,43	-66,72	217,7	785,9
1,3-Butadien	$\overline{C_4H_6}$	54,09	164,23	-108,92	0,00069	147,1	268,65	-4,5	417,8	1037,6
Butan	C_4H_{10}	58,123	134,86	-138,29	4 · 10 - 6	80,22	272,65	-0,5	385,6	1064,3
1-Buten	C_4H_8	56,107	*87,80	*-185,35	_	68,62	266,9	-6,25	390,6	1019,3
cis-2-Buten	C_4H_8	56,107	134,15	-138,9	1,1·10 ⁻⁶	130,3	276,87	3,72	416,37	entfällt
trans-2-Buten	C_4H_8	56,107	167,65	-105,5	0,00054	174	274,03	0,88	405,7	entfällt
Chlor	Cl ₂	70,906	172,15	-101	0,014	90,44	239,05	-34,1	288,05	935
1-Chlor-1,1-difluorethan R 142b	$\overline{C_2H_3ClF_2}$	100,495	*142,35	*-130,80	_	26,75	263,35	-9,8	222,95	1024
Chlordifluormethan R 22	CHCIF ₂	86,48	*113,15	*-160,0	_		232,37	-40,78	234,32	901
Chlorethan R 160	C ₂ H ₅ Cl	64,514	*134,85	*-138,30	_	69,04	285,43	12,28	382,2	entfällt
Chlorethen	C ₂ H ₃ CI	62,499	*119,45	*-153,70	_	75,9	259,45	-13,7	332,8	924,6
Chlormethan	CH ₃ Cl	50,488	175,44	-97,71	0,0087	127,45	249,39	-23,76	428,31	965,4
Chlorpentafluorethan R 115	C_2CIF_5	154,48	167,15	-106	0,01	_	235,15	-38	1314	906,1
2-Chlor-1,1,1,2-tetrafluorethan	CHClFCF ₃	136,50	*74,15	*-199,00	_	_	261,05	-12,1	167,9	_
R 124										
Chlortrifluorethen R 1113	$\overline{C_2CIF_3}$	116,47	*115,05	*-158,10	_	47,73	244,79	-28,36	178,36	985,7
Chlortrifluormethan R 13	CCIF ₃	104,46	*92,15	*-181,0	_	_	191,65	-81,5	150,1	700
Chlorwasserstoff	HCl	36,461	158,91	-114,24	0,138	54,64	188,12	-85,03	442,94	727,4
Cyclopropan	C ₃ H ₆	42,08	*145,53	*-127,62	=	129,4	240,35	-32,8	477,3	898,9
Deuterium	D_2	4,029	18,72	-254,43	0,171	48,8	23,57	-249,58	304,4	534,4
Diboran	B ₂ H ₆	27,67	108,15	-165	6,1·10 ⁻⁴	161,6	180,65	-92,5	516,8	650,7

Kritische	er Punkt			Im flüssigen	Zustand			Im gasförn	nigen Zustand		
Tempera	atur	Druck	Dichte	Dichte am Siedepunkt (bei 1,013 bar)	Dichte (bei 20°C)	Dampf- druck (bei 20°C)	Spezifische Wärme am Siedepunkt	Dichte (bei 1 bar und 15°C)	Spezifische Wärme (bei 1,013 bar und 25°C)	Wärme- leitfähigkeit (bei 1 bar und 15°C)	Bunsenscher Löslichkeits- koeffizient (bei 1,013 bar und 20°C)
K	°C	bar	g/l	g/l	g/l	bar	kJ/kg·K	kg/m³	kJ/kg·K	μW/cm·K	$I_{\text{(Gas)}}/\text{kg}_{\text{(Wasser)}}$
308,33	35,18	61,91	230,8	420	397	43,15	_	1,1	1,685 (bei 20°C)	200,6 (bei 15,6°C)	1,047
405,55	132,4	114,8	235	682	610	8,59	4,47	0,722	2,16	247,0 (bei 25°C)	685,7
150,75	-122,4	48,98	538	1394	entfällt	entfällt	1,05	1,669	0,519	161	0,034
373,05	99,9	66		1634		15	_	3,253	0,494	156,1	0,23
451,95	178,8	38,7	790	1346	1330	1,6	-	4,913	0,532	79,9	hydrolisiert
260,95	-12,2	49,85	591	1589	entfällt	entfällt	1,52	2,867	0,745	182,9	1,057 (bei 0°C)
463,51	190,36	68,6	692	1527	1516	1,2	_	4,5	0,5169	83,4	
467,15	194	52,3	577,1	1721	1662	1,9	_	4,069	0,446	79,5	3,75
340,15	67	39,85	744,8	1992	1570	14,2	0,871	6,3	0,469	80,4	0,0442
363,05	89,9	85,52	807	2203	1790	21	4,2 (bei 35°C)	3,409	0,36	94,2	532,1 (bei 25°C)
425,15	152	43,22	245	650	620	2,48	2,13	2,33	1,47	168,7	0,202
425,16	152,01	37,96	228	601,4	580	2,06	2,36	2,522	1,66	149	0,034
419,55	146,4	39,25	233	630	605	2,62	2,24	2,417	1,53	148	
435,55	162,4	42,07	239	641	620	1,8	2,23	2,424	1,4	140	0,158
428,61	155,46	40,8	238	626	604	2,05	2,15 (bei 0°C)	2,426	1,57	140,7	
417,15	144	77	573	1563	1413	6,88	0,926 (bei -30°C)	3,007	0,473	84,5	2,26
410,25	137,1	41,19	435	1192,8	1193	3,08	1,235	4,29	0,848	118	0,415
369,15	96	49,36	525	1413	1211	9,22	1,01	3,67	0,657	104	0,775
460,35	187,2	52,66	331	877	894	1,33		2,758	0,971	126	0,199
429,65	156,5	55,9	370	970,7	920,2	3,37	1,255	2,659	0,858	75	1,07
416,25	143,1	66,8	353	1002,9	934	5	1,569 (bei 0°C)	2,137	0,808	105	317
353,15	80	31,6	613	1544	1310	7,93	1,315	6,598	0,687	111,8	0,0087
395,65	122,5	36,3	553,8		1364	3,27		5,868	0,741	130	_
					(bei 25°C)					(bei 25°C)	
380,15	107	39,52	550	1464	1271	5,25	1,051	4,963	0,723	106,2	_
301,93	28,78	38,6	581	1526	929	31,8	1,03 (bei -30°C)	4,414	0,641	123	0,02
324,69	51,54	83,4	420	1191	836	42,6		1,536	0,82	169 (bei 25°C)	448
398,3	125,15	55,79	258,5	680,2	610	6,2	1,86 (bei -53 °C)	1,785	1,33	139	0,999
38,35	-234,8	16,65	67,26	162,4	entfällt	entfällt	_	0,1667	5,187	1360,3	_
289,15	16	40,4	160	421	entfällt	entfällt	2,8	1,226	2,04	106	_

Physikalische Daten ausgewählter Produkte

Gas	Chem. Zeichen	Molare Masse	Tripel- bz (bei 1,01)	w. Schmelz 3 bar)	ounkt (*)		Siedepun (bei 1,01)			
Bezeichnung des Gases	zerenen	mosse	Temperat	<u> </u>	Dampf- druck	Schmelz- wärme	Temperat		Verdampf wärme (mit ** im Normzust	
		g/mol	K	°C	bar	kJ/kg	K	°C	kJ/kg	kJ/m³**
Dichlordifluormethan R 12	CCl ₂ F ₂	120,93	*115,37	*-157,78	-	34,33	243,37	-29,78	167,22	902,7
Dichlorfluormethan R 21	CHCI ₂ F	102,92	*138,20	*-134,95	_		282,05	8,9	242,42	entfällt
Dichlorsilan	SiH ₂ Cl ₂	101,01	151,15	-122	< 0,0001	249,5	281,55	8,4	249,5	entfällt
1,2-Dichlortetrafluorethan R 114	$C_2Cl_2F_4$	170,93	*179,15	*-94,0			276,75	3,6	136,9	entfällt
2,2-Dichlor-1,1,1-trifluorethan	CHCl ₂ CF ₃	152,93	*166,15	*-107,00	_		301,05	27,9	174,2	_
R 123	- 2-3	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	/	, , , , ,			,	,	,	
1,1-Difluorethan R 152a	$C_2H_4F_2$	66,05	*156,15	*-117,0	_		248,15	-25	326,6	962
Difluormethan	$\overline{CH_2F_2}$	52,02	_				221,5	-51,65	360,76	_
Dimethylamin	C_2H_7N	45,084	180,95	-92,2	0,001	131,88	280,55	7,4	587,83	entfällt
Dimethylether	C_2H_6O	46,069	*132,15	*-141,0	-	111,41	248,33	-24,82	467,2	960,8
2,2-Dimethylpropan	$\overline{C_5H_{12}}$	72,15	*256,58	*-16,57	_	45,78	282,65	9,5	315,56	entfällt
Disilan	Si ₂ H ₆	62,22	*140,65	*-132,5		_	258,85	14,3	344	915
Distickstoffmonoxid	$\overline{N_20}$	44,013	182,34	-90,81	0,878	148,63	184,68	-88,47	376,14	732,9
Ethan	C ₂ H ₆	30,069	89,28	-183,27	11·10 ⁻⁶	95,04	184,47	-88,68	488,76	652,3
Ethen	$\overline{C_2H_4}$	28,054	103,97	-169,43	0,0012	119,45	169,43	-103,72	482,86	608,9
Ethylamin	$\overline{C_2H_7N}$	45,084	192,15	-81	0,0015	603	289,75	16,6	602,9	entfällt
Ethylenoxid	C_2H_4O	44,053	*160,60	*-112,55		117,48	283,6	10,45	579,8	entfällt
Fluor	F ₂	37,997	53,48	-219,67	0,00252	13,4	85,05	-188,1	172,12	292
Fluormethan R 41	CH ₃ F	34,033	*131,4	-141,75	_		194,74	-78,41	516	357,1
Fluorwasserstoff	HF	20,01	*189,55	*-83,6	_	_	292,5	19,35	375	_
German	GeH ₄	76,62	*107,17	*-165,98	0,00084		184,65	-88,5	183,6	984,1
Helium	Не	4,0026	2,177	-270,97	0,051	3,49	4,22	-268,93	20,3	3,62
Helium-3	³He	3,016	2 · 10 -3	-273,15	< 0,0001		3,19	-269,96	8,45	1,13
Hexafluorethan R 116	$\overline{C_2F_6}$	138,012	173,13	-100,02	0,265	117,2	194,95	-78,2	116,7	729
Isobutan	C ₄ H ₁₀	58,123	113,73	-159,42	5 · 10 ⁻⁵	78,17	261,45	-11,7	366,8	972,9
Isobuten	C ₄ H ₈	56,107	*132,80	*-140,35	_	105,59	266,03	-7,12	400,67	1021,9
Kohlendioxid	CO ₂	44,01	216,58	-56,57	5,185	196,65	194,65	-78,5	573,02	1129
							SublTemp.	SublTemp.	SublWärme	
Kohlenmonoxid	<u>CO</u>	28,01	68,14	-205,01	0,1535	29,89	81,62	-191,53	215,2	265,6
Krypton	Kr	83,8	115,95	-157,2	0,731	19,51	119,8	-153,35	107,81	398,9
Methan	CH ₄	16,043	90,68	-182,47	0,117	58,3	111,63	-161,52	510	366
Methylamin	CH ₅ N	31,057	*179,69	*-93,46		197,62	266,82	-6,33	831,5	1166,2
Methylmercaptan	CH_4S	48,1	*150,15	*-123,00	-	122,8	279,11	5,96	511,04	entfällt

Kritische	er Punkt			Im flüssigen	Zustand			Im gasförn	nigen Zustand		
Tempera	atur	Druck	Dichte	Dichte am Siedepunkt (bei 1,013 bar)	Dichte (bei 20°C)	Dampf- druck (bei 20°C)	Spezifische Wärme am Siedepunkt	Dichte (bei 1 bar und 15°C)	Spezifische Wärme (bei 1,013 bar und 25°C)	Wärme- leitfähigkeit (bei 1 bar und 15°C)	Bunsenscher Löslichkeits- koeffizient (bei 1,013 bar und 20°C)
K	°C	bar	g/l	g/l	g/l	bar	kJ/kg·K	kg/m³	kJ/kg·K	μW/cm·K	$I_{\text{(Gas)}}/\text{kg}_{\text{(Wasser)}}$
385,15	112	41,15	557,4	1486	1330	5,67	0,988 (bei 30°C)	5,089	0,582	94,6	0,052
451,65	178,5	51,68	522	1397,5	1380	1,53	1,07	4,436	0,586	80,8	2,066
449,45	176,3	43,8	479	1261	1236	1,6		4,397	0,611		hydrolisiert
418,85	145,7	32,63	578	1527	1472	1,83	1,0 (bei 0°C)	7,377	0,712	105	0,017
456,85	183,7	36,68	550	_	1463	1,013	_	6,392	0,721	112	_
					(bei 25°C)			(bei 30°C)		(bei 25°C)	
386,65	113,5	47,56	365	1011	913	5,17	_	2,808	1,03	139	0,706
351,55	78,4	58,3	430	1213	986	14,7	_	2,724	0,825	134,9	- <u>-</u>
437,75	164,6	53,05	256	670,8	655	1,7	3,03 (bei 2,4°C)	1,944	1,532	159	118
400,1	126,95	52,69	271,4	734,7	661	5,31	2,24	1,964	1,428	154,1	35
					(bei 25 °C)				. <u> </u>		_
433,78	160,63	31,96	238	603,2	591	1,49	2,365	3,194	1,687	156	
424	150,85	35,8	0,599	901	838	3,3		2,66	1,1608		
309,56	36,41	72,45	452	1222,8	788,2	50,8	_	1,853	0,879	156	0,665
305,42	32,27	48,84	205,6	546,5	350	37,76	2,43	1,265	1,768	200	0,049
282,65	9,5	50,76	218	567,92	entfällt	entfällt	2,42	1,178	1,54	188	0,122
456,55	183,4	56,29	248,3	687,4	676,9	<u>1,17</u>	2,87	1,915	1,612	201	
468,93	195,78	71,91	314	887	880	1,4	1,955	1,899	1,1	121	1,89
144,15	-129	55,7	0,5738	1505	entfällt	entfällt		1,587	0,825	26,8	bildet HF
317,7	44,55	58,8	0,3	808		33	1,747	1,445	1,745	_	
461	187,85	65,0	0,29	_	-	1,08	_	_	1,458	_	vollständig
307,95	34,8	55,5	1,378	1360	1041	45	_	3,24	0,587	_	unlöslich
5,21	-267,94	2,29	69,4	125	entfällt	entfällt	4,48	0,167	5,196	1482	0,0083
3,33	-269,82	1,17	41,3	59	entfällt	entfällt	2,64 (bei -271,15°C)	0,128	-	_	_
292,85	19,7	33	601	1608	entfällt	entfällt	0,951	5,829	0,771	161,3	
408,13	134,98	37,2	221	593,4	557,1	3,04	2,41 (bei 20°C)	2,514	1,671	152	0,0325
417,85	144,7	40,01	234	626,2	598,63	2,68	2,3 (bei 15,6°C)	2,418	1,591	153	
304,21		73,825		1177,8	776,2	57,29	1,848	1,848	0,85	157	0,87
				(am TrP.)							
132,91	-140,24	34,99	301	788,6	entfällt	entfällt	2,15 (bei -197°C)	1,17	1,04	241	0,0227
209,4	-63,75	55,02	919	2413	entfällt	entfällt		3,507	0,247	96	0,59
190,53	-82,62	46,04	162	422,62	entfällt	entfällt	3,43	0,671	2,22	321	0,035
430,05	156,9	74,6	216	694	662,4	3	3,28	1,329	1,612	183	757
469,95	196,8	72,33	332	886	866	1,67	7,696 (bei -21°C)	2,046	1,05	130	11,25

Physikalische Daten ausgewählter Produkte

Gas	Chem. Zeichen	Molare Masse	Tripel- bz (bei 1,01)	w. Schmelz _l 3 bar)	ounkt (*)		Siedepun (bei 1,01)			
Bezeichnung des Gases			Temperat		Dampf- druck	Schmelz- wärme	Temperat		Verdampfungs- wärme (mit ** im Normzustand)	
		g/mol	K	°C	bar	kJ/kg	K	°C	kJ/kg	kJ/m³**
Methylvinylether	C ₃ H ₆ O	58,081	*151,15	*-122,00	_	117,5	279,15	6	422	entfällt
Neon	Ne	20,179	24,55	-248,6	0,433	16,7	27,1	-246,05	88,7	77,35
Octafluorcyclobutan R C318	C ₄ F ₈	200,031	233	-40,15	0,191	_	266,73	-6,42	116	-
Octafluorpropan R 218	C_3F_8	188,02	124,85	148,3	_		236,45	-36,7	104	_
Pentafluorethan R 125	C ₂ HF ₅	120,00	*170,15	*-103,00	-	=	225,05	-48,1	164,4	-
Phosgen	COCl ₂	98,916	145,37	-127,78	< 0,001	58,046	280,7	7,55	246,8	entfällt
Phosphin	PH ₃	33,998	139,25	-133,9	0,0036	33,3	185,38	-87,77	429,4	657
Propan R 290	$\overline{C_3H_8}$	44,096	85,47	-187,68	3 · 10 -9	95,04	231,11	-42,04	426	854,1
Propen R 1270	C_3H_6	42,081	87,8	-185,35	4 · 10 - 9	71,38	225,43	-47,72	437,94	731
Sauerstoff	02	31,999	54,35	-218,8	0,00152	13,91	90,18	-182,97	212,98	304,32
Schwefeldioxid	SO ₂	64,063	197,63	-75,52	0,0167	115,56	263,14	-10,01	389,37	1119,4
Schwefelhexafluorid	SF ₆	146,05	222,35	-50,8	2,24	34,4	209,35	-63,80	162,2	1053,6
							SublTemp.	SublTemp.	SublWärme	SublWärme
Schwefelwasserstoff	$\overline{H_2S}$	34,08	187,45	-85,7	0,227	69,79	212,95	-60,2	548,47	829,7
Silan	SiH ₄	32,118	86,75	-186,4	< 0,001	24,62	161,75	-111,4	361,2	520
Siliciumtetrafluorid	SiF ₄	104,079	186,40	-86,75	2,240		178,0	-95,15	143	_
							SublTemp.	SublTemp.	SublWärme	
Stickstoff	$\overline{N_2}$	28,013	63,15	-210	0,1253	25,75	77,35	-195,8	198,7	248,48
Stickstoffdioxid/Distickstoff-	$\overline{NO_2/}$	46,0/	261,95	-11,2	0,186	159,52	294,25	21,1	414	entfällt
tetroxid	N_2O_4	92,01								
Stickstoffmonoxid	NO	30,006	109,55	-163,6	0,219	76,62	121,4	-151,75	461,3	608,4
Stickstofftrifluorid	NF ₃	71,002	66,36	-206,79	_		144,15	-129	163,1	entfällt
1,1,1,2-Tetrafluorethan R 134a	CH ₂ FCF ₃	102,00	*172,15	*-101,00	-	-	247,05	-26,1	217,1	-
Tetrafluormethan R 14	CF ₄	88,01	*89,26	*-183,39	_	79,5	145,21	-127,94	135,7	526,1
Trifluormethan R 23	CHF ₃	70,01	*118,15	*-155,00		58,2	190,97	-82,18	238,5	803,6
Trimethylamin	$\overline{C_3H_9N}$	59,111	*156,05	*-117,10	_	110,95	276,02	2,87	388,1	entfällt
Wasserstoff	H ₂	2,016	13,95	-259,2	0,072	58,24	20,38	-252,77	454,3	40,83
Wolframhexafluorid	WF ₆	297,84	275,50	2,35	0,5597		290,21	17,1	87,80	
Xenon	Xe	131,3	161,35	-111,8	0,816	17,488	165,05	-108,1	96,29	564,64

Temperatur K °C)ruck	Dichte	Dichte am Siedepunkt	Dichte	Damaf					
K °C	b			(bei 1,013 bar)	(bei 20°C)	Dampf- druck (bei 20°C)	Spezifische Wärme am Siedepunkt	Dichte (bei 1 bar und 15°C)	Spezifische Wärme (bei 1,013 bar und 25°C)	Wärme- leitfähigkeit (bei 1 bar und 15°C)	Bunsenscher Löslichkeits- koeffizient (bei 1,013 bar und 20°C)
		ar	g/l	g/l	g/l	bar	kJ/kg·K	kg/m³	kJ/kg·K	μW/cm·K	$I_{(Gas)}/kg_{(Wasser)}$
436,75 163	3,6 4	6,66		768,4	776 (bei 0°C)	1,74	_	2,439	1,326	147	3,86
44,4 -228	8,75 2	27,2	484	1206	entfällt	entfällt	1,841 (bei -246,4°C)	0,842	1,03	476	0,01
388,47 115	5,32 2	7,77	616	1637	1541	2,70	_	8,87	0,816	67	_
345,05 71,9	- -	6,8	628	1601	1345	7,7	_	7,99	0,5999	138,3	
339,45 66,3		6,3	571,9	-	1189,7 (bei 25°C)	12,05	-	5,096	0,809	166 (bei 25°C)	-
455,16 182	2,01 5	6,74	520	1410	1285	1,52	1,017	4,184	0,582	91	zerf. zu HCl/CO ₂
325,05 51,9		5,3	301	740	567	34,6	0,998	1,432	1,091	163	
369,82 96,6		2,5	217	582	500,5	8,53	2,52	1,871	1,662	167 (bei 25°C)	0,039
364,75 91,6		6,1	232,5	613,9	510	10,43	2,176	1,785	1,549	156	0,23
		0,43	436,1	1141	entfällt	entfällt	1,69	1,337	0,919	253,6	0,31
430,8 157		8,84	525	1458	1380	3,26	1,331 (bei 0°C)	2,725	0,624	91	39,4
318,69 45,5		7,59	734	1910	1439	21	0,759	6,176	0,666	131,5	0,0056
				(bei -50,8°C)	(bei 15°C)		(bei -48°C)				
373,2 100	0,05 8	9,37	346	914,9	800	17,9	1,98	1,434	1,001	139	2,582
269,65 -3,5	5 4	8,4	309	556	entfällt	entfällt	_	1,35	1,33	178	_
259,00 -14,	,15 3	7,2	_	_	-	_	_	_	0,7059	_	_
126,2 -14	6,95 3	3,999	314,03	808,5	entfällt	entfällt	2,06	1,17	1,041	250	0,0156
431 157			550	1439	1443	0,96	_	-	1,327	132	hydrolisiert
180,15 -93	6	4,85	520	1300	entfällt	entfällt		1,25	0,996	248	0,047
233,89 -39,		5,31	522	1540	entfällt	entfällt	_	2,96		_	
374,25 101	•	0,6	515,3	-	1206 (bei 25°C)	5,72	-	4,359	0,852	145 (bei 25°C)	_
227,7 -45,	5.45	7,43	633	1603	entfällt	entfällt	1,23 (bei -80°C)	3,692	0,71	162	0,0038
299,15 26			516	1439	816	41,6	6,5 (bei 25°C)	2,949	0,737	130,2	3,19
		0,8	233	653,4	633	1,86	2,21 (bei -2,7°C)	2,552	1,553	154	180
	9,91 1		30,1	70,8	entfällt	entfällt		0,0841	14,27	1769	0,0178
-, 23	,	, - =	- /	- / -			,	-,	(bei 15 °C)		
452,70 179	9,55 4	5,7	1280	3430	_	1,132	_	_	-	_	
289,73 16,5		8,4	1110	2945	entfällt	entfällt	3,37	5,517	0,159	55,7	0,108

Index.

A	
ACCURA® Cylinder Management	196
Acetylen (Ethin)	48 , 126, 177, 180, 182,
	185, 206, 208
Administration und Controlling	195, 196
ADR	46, 173, 203
AGW	46
Akkreditierung	120 , 121, 122, 123
Allgemeine Geschäftsbedingungen	221
Ammoniak	23, 35 , 49, 50 , 126, 128 ,
	176, 185, 192, 205, 208
Analysengenauigkeit	39, 118, 119, 124
Analysenzertifikat	119, 124, 196
Analytik	10, 11, 13 , 19, 122, 191, 199, 202
Anwendungstechnik	198
Arbeitsschutz	10, 11, 15 , 19, 186
Argon	25, 29, 31, 51 , 52 , 126, 129, 141,
	153, 177, 185, 205, 208
 Armaturen	7, 39, 187–190, 198 , 199
Arsin	53 , 126, 129, 176, 185, 205, 208
Arzneimittel	33, 37
Atemsauerstoff	99
Atomabsorptionsspektrometrie (AAS)	45
Automobilindustrie	10, 11, 17
Additioniiiidastric	10, 11, 17
B	
BAM	122, 123
Barcode	196
BASELINE®	
Behälterbewegungen, Kontrolle der	198
Behälterbewegungen, Kontrolle der Behälter für Spezialgase	198 196
Behälterbewegungen, Kontrolle der	198 196 171-192
Behälterbewegungen, Kontrolle der Behälter für Spezialgase	198 196 171-192 126
Behälterbewegungen, Kontrolle der Behälter für Spezialgase Beimengungen, Liste der möglichen	198 196 171-192 126 13, 39, 41, 198, 199
Behälterbewegungen, Kontrolle der Behälter für Spezialgase Beimengungen, Liste der möglichen Betriebsgase	198 196 171-192 126 13, 39, 41, 198, 199 54 , 126, 185, 205, 208
Behälterbewegungen, Kontrolle der Behälter für Spezialgase Beimengungen, Liste der möglichen Betriebsgase Bortrichlorid	198 196 171-192 126 13, 39, 41, 198, 199 54 , 126, 185, 205, 208 55 , 126, 185, 205, 208
Behälterbewegungen, Kontrolle der Behälter für Spezialgase Beimengungen, Liste der möglichen Betriebsgase Bortrichlorid Bortrifluorid	198 196 171-192 126 13, 39, 41, 198, 199 54 , 126, 185, 205, 208 55 , 126, 185, 205, 208
Behälterbewegungen, Kontrolle der Behälter für Spezialgase Beimengungen, Liste der möglichen Betriebsgase Bortrichlorid Bortrifluorid Branchenübersicht	198 196 171-192 126 13, 39, 41, 198, 199 54, 126, 185, 205, 208 55, 126, 185, 205, 208 10, 11 43, 73, 100, 109, 110, 180, 185
Behälterbewegungen, Kontrolle der Behälter für Spezialgase Beimengungen, Liste der möglichen Betriebsgase Bortrichlorid Bortrifluorid Branchenübersicht Brandfördernd Brennbar	198 196 171–192 126 13, 39, 41, 198, 199 54, 126, 185, 205, 208 55, 126, 185, 205, 208 10, 11 43, 73, 100, 109, 110, 180, 185 15, 43, 180, 185
Behälterbewegungen, Kontrolle der Behälter für Spezialgase Beimengungen, Liste der möglichen Betriebsgase Bortrichlorid Bortrifluorid Branchenübersicht Brandfördernd Brennbar Brennergemische	198 196 171–192 126 13, 39, 41, 198, 199 54, 126, 185, 205, 208 55, 126, 185, 205, 208 10, 11 43, 73, 100, 109, 110, 180, 185 15, 43, 180, 185
Behälterbewegungen, Kontrolle der Behälter für Spezialgase Beimengungen, Liste der möglichen Betriebsgase Bortrichlorid Bortrifluorid Branchenübersicht Brandfördernd Brennbar Brennergemische Bromwasserstoff	198 196 171-192 126 13, 39, 41, 198, 199 54, 126, 185, 205, 208 55, 126, 185, 205, 208 10, 11 43, 73, 100, 109, 110, 180, 185 15, 43, 180, 185 160 56, 126, 185, 205, 208
Behälterbewegungen, Kontrolle der Behälter für Spezialgase Beimengungen, Liste der möglichen Betriebsgase Bortrichlorid Bortrifluorid Branchenübersicht Brandfördernd Brennbar Brennergemische Bromwasserstoff Bündel	198 196 171-192 126 13, 39, 41, 198, 199 54, 126, 185, 205, 208 55, 126, 185, 205, 208 10, 11 43, 73, 100, 109, 110, 180, 185 15, 43, 180, 185 160 56, 126, 185, 205, 208 171, 176, 179, 183, 197
Behälterbewegungen, Kontrolle der Behälter für Spezialgase Beimengungen, Liste der möglichen Betriebsgase Bortrichlorid Bortrifluorid Branchenübersicht Brandfördernd Brennbar Brennergemische Bromwasserstoff Bündel 1,3-Butadien	198 196 171-192 126 13, 39, 41, 198, 199 54, 126, 185, 205, 208 55, 126, 185, 205, 208 10, 11 43, 73, 100, 109, 110, 180, 185 15, 43, 180, 185 160 56, 126, 185, 205, 208 171, 176, 179, 183, 197 57, 126, 185, 206, 208
Behälterbewegungen, Kontrolle der Behälter für Spezialgase Beimengungen, Liste der möglichen Betriebsgase Bortrichlorid Bortrifluorid Branchenübersicht Brandfördernd Brennbar Brennergemische Bromwasserstoff	198 196 171-192 126 13, 39, 41, 198, 199 54, 126, 185, 205, 208 55, 126, 185, 205, 208 10, 11 43, 73, 100, 109, 110, 180, 185 15, 43, 180, 185 160 56, 126, 185, 205, 208 171, 176, 179, 183, 197 57, 126, 185, 206, 208 58, 126, 143, 157, 181,
Behälterbewegungen, Kontrolle der Behälter für Spezialgase Beimengungen, Liste der möglichen Betriebsgase Bortrichlorid Bortrifluorid Branchenübersicht Brandfördernd Brennbar Brennergemische Bromwasserstoff Bündel 1,3-Butadien Butan	198 196 171–192 126 13, 39, 41, 198, 199 54, 126, 185, 205, 208 55, 126, 185, 205, 208 10, 11 43, 73, 100, 109, 110, 180, 185 15, 43, 180, 185 160 56, 126, 185, 205, 208 171, 176, 179, 183, 197 57, 126, 185, 206, 208 58, 126, 143, 157, 181, 185, 206, 208
Behälterbewegungen, Kontrolle der Behälter für Spezialgase Beimengungen, Liste der möglichen Betriebsgase Bortrichlorid Bortrifluorid Branchenübersicht Brandfördernd Brennbar Brennergemische Bromwasserstoff Bündel 1,3-Butadien	198 196 171–192 126 13, 39, 41, 198, 199 54, 126, 185, 205, 208 55, 126, 185, 205, 208 10, 11 43, 73, 100, 109, 110, 180, 185 15, 43, 180, 185 160 56, 126, 185, 205, 208 171, 176, 179, 183, 197 57, 126, 185, 206, 208 58, 126, 143, 157, 181,

C	
CAS-Nummer	46, 178
Chemie	10, 11, 19
Chemiepark	19
Chlor	62 , 126, 130, 176, 185,
	192, 199, 205, 208
Chlordifluormethan (R 22)	63 , 126, 207, 208
Chlorethen (Vinylchlorid)	64 , 126, 185, 208
Chlormethan (Methylchlorid)	65 , 126, 185, 208
Chlorwasserstoff	29, 66 , 126, 130, 156,
	185, 192, 199, 205, 208
CLP	172, 173, 174
CO ₂ -Laser, Gasgemische für	158, 159
Cyanwasserstoff	126
Cylinder Management,	196
siehe ACCURA®	
D	
DAkkS-Kalibrierschein	120
Dampfdruckkurven von	
→ anorganischen Gasen	205
→ Kohlenwasserstoffen	206
→ Kohlenwasserstoff-Derivaten	207
Datenblätter	9, 178, 181, 196, 197
Deuterium	67 , 126, 185, 205, 208
Diboran	126, 131 , 205, 208
Dichlorsilan	68 , 126, 185, 205, 210
Difluormethan (R 32)	69 , 126, 157, 185, 210
Dimethylamin	70 , 126, 185, 207, 210
Dimethylether	71 , 126, 185, 206, 210
Disilan	72 , 126, 185, 210
Distickstoffmonoxid	73 , 126, 135, 177,
(Lachgas, Stickoxydul)	185, 210
Distickstofftetroxid/Stickstoffdioxid	108 , 127, 185, 205, 212
Druckgasbehälter	45, 46, 122, 124, 125,
	171-192 , 196, 203
Druckgasdose, siehe HiQ® MINICAN	186, 189
Druckminderer	3, 181 , 187-190, 198
Durchflussmesser	187

<u>E</u>	
ECD	80, 106, 114, 141, 199
ECOCYL®	80, 106, 114, 128, 139, 140, 142,
	145, 146, 148, 150, 154, 186, 187
EDI	197
Einwegbehälter	187-189, 220
Elektronikindustrie	10, 11, 21
Elektronischer Katalog	197
Energietechnik	10, 11, 23
Entsorgung	19, 187, 202, 203
Ethan	74 , 126, 143, 185, 206, 210
Ethanol (Ethylalkohol)	126, 131
Ethen (Ethylen)	75 , 126, 176, 185, 206, 210
Ethin, siehe Acetylen	48 , 126, 177, 180, 182,
	185, 206, 208
Ethylenoxid (Oxiran)	76 , 126, 132, 185, 207, 210
Excimer-Laser, Gasgemische für	156
Export-Service	200
F	
Fässer	171, 192
Feinregelventil	189
Flammenphotometrie	48
Flaschenschultern	46, 176
Flaschenventil	181, 184, 185, 187
Flüssiggemische	125
(unter Druck verflüssigt)	
Fluor	29, 126, 156, 176, 199, 210
Fluormethan (R 41)	77 , 126, 185, 210
Fluorwasserstoff	78 , 126, 210
Forschungsinstitute	10, 11, 41

G	
Gasanalysenservice	202
Gaschromatographie	45
Gaseigenschaften	43
Gase in Kleinbehältern	41, 186
Gasflaschenventile	185
Gasgemische	118-169
Gasgemische für Excimer-Laser	156
Gasgemische für spezielle	156
Anwendungen	.50
Gasgeräte mit atmosphärischen	160
Brennern, Prüfgase für	
→ G20	160
→ G21	160
→ G23	160
→ G25	160
→ G26	160
→ G30	160
→ G31	160
→ G32	160
→ G110	160
→ G112	160
→ G120	160
→ G130	160
→ G221	160
→ G271	160
Gaskalorimeter, Prüfgase für	161
→ 2H	161
→ 2HL	161
→ 2LH	161
→ 2LHL	161
→ 2L	161
→ 2LL	161
→ 3S	161
Gasversorgung	195, 198, 199, 200, 202, 203
Gefährdungsbeurteilung	202
Gefahrenpiktogramme	174, 175
German	79 , 126, 132, 185, 210
GHS	172 , 178
Giftig	43 , 174–176
Glasindustrie	10, 11, 25
GUM	122

H	
Handhaben von Druckgasbehältern	181
Hazard Statements	172, 174 , 175
Helium	80 , 81 , 124, 126, 133, 143, 149,
	153, 156, 177, 185, 205, 210
Helium-3	82 , 126, 185, 210
Herstelltoleranz	118, 119 , 121, 124
Herstellung von Prüfgasen	125
Heptan	126
Hexafluorethan (R 116)	83 , 126, 185, 207, 210
Hinweise	
→ Umgang mit Druckgasbehältern	178-181
→ Liefer- und Nutzungsbedingungen	220
HiQ [®]	9, 39, 186-190
HiQ [®] MAXICAN	186, 188
HiQ [®] MICROCAN	186, 190
HiQ [®] MINICAN	186, 189
H-Sätze	172, 174 , 175
1	
ICP-Spektrometrie	45
Isobutan (i-Butan)	84 , 126, 133, 143, 157,
	185, 206, 210
Isobuten (i-Buten, Isobutylen)	85 , 126, 185, 206, 210
Isobutylmethylketon	126
Isofluran	126
ISO Guide 34	13, 120-122
ISOKRYPT®	89
Isopentan	126
Isopren	126
Isopropylacetat	126
Isopropylamin	126
Isopropylmercaptan	126
IUPAC	46

K	
Kältemittel	27, 99, 157
→ R 14 (Tetrafluormethan)	111 , 127, 185, 207, 212
→ R 21 (Dichlorfluormethan)	126, 207, 210
→ R 22 (Chlordifluormethan)	63 , 126, 207, 208
→ R 23 (Trifluormethan)	112 , 127, 185, 207, 212
→ R 32 (Difluormethan)	69 , 126, 157, 185, 210
→ R 40B1 (Brommethan)	126, 185, 208
→ R 41 (Fluormethan)	77 , 126, 185, 210
→ R 113 (1,1,2-Trichlortrifluorethan)	127
→ R 114 (1,2-Dichlortetrafluorethan)	126, 207, 210
→ R 115 (Chlorpentafluorethan)	126, 208
→ R 116 (Hexafluorethan)	83 , 126, 185, 207, 210
→ R 123 (2,2-Dichlor-1,1,1,-trifluorethan)	126, 210
→ R 124 (2-Chlor-1,1,1,2-tetrafluorethan)	208
→ R 125 (Pentafluorethan)	127, 157, 185, 212
→ R 134a (1,1,1,2-Tetrafluorethan)	127, 157, 185, 212
→ R 141b (1,1-Dichlor-1-fluorethan)	126
→ R 142b (1-Chlor-1,1-difluorethan)	126
→ R 143a	127, 157
→ R 152a (1,1-Difluorethan)	126, 185, 210
→ R 218 (Octafluorpropan)	94 , 127, 185, 207, 212
→ R 290 (Propan)	97 , 127, 140, 143, 144,
	145, 185, 206, 212
→ R 404A	157
→ R 407C	157
→ R 407F	157
→ R 410A	157
→ R 417A	157
→ R 422A	157
→ R 422D	157
→ R 437A	157
→ R 507	157
→ R 600	157
→ R 600a (Isobutan)	84 , 126, 133, 143, 157,
	185, 206, 210
→ R 1270 (Propen)	98 , 127, 185, 206, 212
→ R C318 (Octafluorcyclobutan)	93 , 127, 185, 212
Kältetechnik	10, 11, 27
Kalibriergas	17, 23, 33, 39, 122 , 123 , 203
Kalibrierlabor	120-123 , 203
Kleinbehälter	171, 186

ohlendioxid	86 , 87 , 127, 132, 134–137,
	140, 177, 185, 205, 210
ohlendioxid SFC	86
ohlendioxid SFE	86
ohlenmonoxid	88 , 127, 136, 138–140, 155, 176,
	185, 205, 210
onformitätserklärung	47 , 196
Conzentration	46, 118, 119, 125
Corrosiv	43 , 174, 183, 198, 199
rypton	89 , 127, 156, 176, 185, 205, 210
undenportal	9, 47, 178, 196
	, , ,
abor	19, 33, 41 , 120, 121,
	122, 123, 198, 202
achgas, siehe Distickstoffmonoxid	73 , 126, 135, 177, 185, 210
ASERMIX®	29, 156, 158 , 159
asertechnik	10, 11, 29
ichttechnik	10, 11, 31
iefer- und Nutzungsbedingungen,	220
iehe Hinweise	
inde Gas DIREKT™	47, 178, 196
IPROTECT® Sicherheitsprogramm	9, 181, 202
1 3	, ,
Λ	
Nassenkonzentration	118
iQ® MAXICAN	186, 188
Nedizinprodukt	33
Nedizintechnik	10, 11, 33
Nembranventil	45, 184
Mengenangaben	118
Messunsicherheit	118, 119, 121-124
Metallurgie	10, 11, 35
Methan	90 , 127, 141 , 142 , 143 ,
	176, 185, 206, 210
Nethylamin	91 , 127, 185, 207, 210
Netrologische Eigenschaften	121
IiQ [®] MICROCAN	186, 190
iiQ [®] MINICAN	186, 189
	·
I	
lebenbestandteile	44, 47
leon	92 , 127, 129, 176, 185, 205, 212
IIST	122, 123
	· · · · · · · · · · · · · · · · · · ·

0	
Octafluorcyclobutan (R C318)	93 , 127, 185, 212
Octafluorpropan (R 218)	94 , 127, 185, 207, 212
Octafluortetrahydrofuran	95 , 127, 185
Oxidierend	43, 176
Oxiran, siehe Ethylenoxid	76 , 126, 132, 185, 207, 210
P	
Petrochemie	9, 10, 11, 19
Pharma	10, 11, 37 , 86, 106
Pharmazeutische Industrie	10, 11, 37 , 86, 106
Phosphin	96 , 127, 144, 185, 212
Physikalische Daten	208-213
PLASTIGAS®	186, 191
ррь	44, 45
ppm	44, 45, 47
ppq	44, 45
ppt	44, 45
Propan	97 , 127, 140, 143, 144,
	145, 185, 206, 212
Propen (Propylen)	98 , 127, 185, 206, 212
Prozess-Gaschromatographen,	162-169
Prüfgase für	
→ B-5K	162
→ B1-5K	162
→ 6H	162
→ 6L	162
→ P1-7K	162
→ L1-8K	162
→ L2-8K	163
→ H1-8K	163
→ H2-8K	163
→ 9M	163
→ 9E	164
→ P1-9K	164
→ 11M	164
→ 11D	164
→ H1-11K	165
→ H1A-11K	165
→ H2-11K	165
→ H3-11K	166
→ L1-11K	166
→ L2-11K	166

 → P1-11K → 12M → 12F 	167
→ 12F	167
* IAL	167
→ 13K	168
→ 13D	168
→ 16M	168
→ 17K	169
Prüfgase, siehe Gasgemische	118-169
Prüfgase mit enger Herstelltoleranz (PEH) 13,	121, 124
Prüfgasklasse	121, 124
Prüflabor	120
Q	
Qualität 9, 45, 46, 120, 121, 1	123, 125,
184, 195 , 198,	200, 202
Qualitätsgarantie	9
	, 45, 186
Qualitätspyramide	121
Qualitätssicherung	123, 125
R	
	, 99, 157
REDLINE®	198
	120-123
Reingase 7, 43, 44, 4	
Reinheit	44, 47
	119, 124
	120, 121
Rückverfolgbarkeit	196

S	
Sauerstoff	99 , 100 , 127, 134, 135, 137,
	139, 146, 147, 152, 155, 176,
	177, 185, 205, 212
Schulungen	202
Schwefeldioxid	101 , 127, 147 , 176, 185,
	192, 205, 212
Schwefelhexafluorid	102 , 127, 185, 205, 212
Schwefelwasserstoff	103 , 127, 148 , 185, 205, 212
Selbstentzündlich	43
Services	195-203
SI	121, 122
Sicherheit	9, 172, 173, 178, 179, 181,
	195, 197, 202 , 203
Sicherheitsdatenblätter	9, 178, 181, 196
Sicherheitsprogramm,	9, 181, 202
siehe LIPROTECT®	
Sicherheitsseminar	9, 181, 202
Sicherheitstechnik	199
Silan	104 , 127, 149, 185, 205, 212
Siliciumtetrafluorid	105 , 127, 185, 212
Spezielle Anwendungen,	156
Gasgemische für	
Spritzenadapter	189
Sprühdüse	189
Stabilität	119
Standardbehälter	171, 182
Stickoxydul, siehe	73 , 126, 135, 177, 185, 210
Distickstoffmonoxid	
Stickstoff	106 , 107 , 127, 128, 130, 131,
	133, 134, 136-140, 144, 146-148,
	150–152, 154, 155,
	176, 177, 185, 205, 212
Stickstoffdioxid/Distickstofftetroxid	108 , 127, 185, 205, 212
Stickstoffmonoxid	109 , 127, 150, 151,
	176, 185, 205, 212
Stickstofftrifluorid	110 , 127, 185, 212
Stoffmengenanteil	118, 119, 122, 123, 204
Stoffmengenkonzentration	118
Synthetische Luft	128, 135, 139, 142, 145–148, 154

T	
Tabellen	204-213
Taupunkt von Gasen	204
1,1,1,2-Tetrafluorethan (R 134a)	127, 157, 185, 212
Tetrafluormethan (R 14)	111 , 127, 185, 207, 212
Trifluormethan (R 23)	112 , 127, 185, 207, 212
Trimethylamin	113 , 127, 185, 207, 212
Trimethylboran	127, 152
U	
Umgang mit Druckgasbehältern	178-181
Umweltschutz	9, 10, 11, 19, 39 , 43, 172
Universitäten	10, 11, 41
UN-Nummer	46, 173
<u> </u>	,
V	
Ventilanschlüsse	181, 185
VERISEQ® GAC Pharma	86
VERISEQ® GAN Pharma	106
VERISEQ® Pharmagase	37
Versorgung	195, 196, 198, 200 , 202, 203
Versorgungsanlagen	199 , 202
VSL	122, 123
W	
Wartung	202
Wasserdampf	127
Wassergehalt von Gasen	204
Wasserstoff	114 , 115 , 124, 127, 129, 131,
	132, 144, 149, 152-155,
	176, 185, 205, 212
X	
Xenon	116 , 127, 176, 185, 205, 212
_	
Z	202
Zustands- und Konformitätsprüfung	202

Liefer-, Nutzungs- und Geschäftsbedingungen.

Lieferbedingungen

Grundlage für die Bestellung und Lieferung sind die Allgemeinen Geschäftsbedingungen der Linde AG, Geschäftsbereich Linde Gas für Deutschland. Die Allgemeinen Geschäftsbedingungen können in der aktuellsten Fassung unter www.linde-gas.de eingesehen werden.

Abgesehen von besonderen Lieferformen, wie zum Beispiel Einwegbehältern, werden Gase vorzugsweise in Linde-Leihflaschen geliefert. Kundenbehälter können nur nach besonderer Eignungsprüfung befüllt werden. Dies ist in jedem Fall mit längeren Lieferzeiten und erhöhten Kosten verbunden. Eine Reihe von Gasen können nur in Linde-Flaschen geliefert werden.

Nutzungsbedingungen

Alle technischen Angaben in diesem Katalog werden nach bestem Wissen mitgeteilt und von Linde Gas bei eigenen Arbeiten verwendet. Eine weitergehende Garantie kann aus ihnen ebenso wenig abgeleitet werden wie das Recht, bestehende Patente oder andere Schutzrechte zu benutzen.

Des Weiteren behält sich die Linde AG das Recht vor, Änderungen oder Ergänzungen der bereitgestellten Informationen vorzunehmen. Die Vervielfältigung von Informationen oder Daten, insbesondere die Verwendung und Entnahme von Texten, Textteilen oder Bildmaterial, bedarf der vorherigen Zustimmung der Linde AG.

Die Linde AG prüft und aktualisiert die Informationen auf ihren Internetseiten ständig. Trotz aller Sorgfalt können sich die Daten inzwischen verändert haben. Eine Haftung oder Garantie für die Aktualität, Richtigkeit und Vollständigkeit der zur Verfügung gestellten Informationen kann daher nicht übernommen werden. Gleiches gilt auch für alle anderen Internetseiten, auf die mittels Hyperlink verwiesen wird.

Allgemeine Geschäftsbedingungen

Es gelten die Allgemeinen Geschäftsbedingungen der Linde AG, Geschäftsbereich Linde Gas für Deutschland in ihrer jeweils gültigen Fassung.

Für Bezüge über Gas & More gelten die Allgemeinen Geschäftsbedingungen von Linde Gas & More in ihrer jeweils gültigen Fassung, einsehbar in den jeweiligen Gas & More Shops vor Ort.

Vorsprung durch Innovation.

Linde ist mehr. Linde übernimmt mit zukunftsweisenden Produkt- und Gasversorgungskonzepten eine Vorreiterrolle im globalen Markt. Als Technologieführer ist es unsere Aufgabe, immer wieder neue Maßstäbe zu setzen. Angetrieben durch unseren Unternehmergeist arbeiten wir konsequent an neuen hochqualitativen Produkten und innovativen Verfahren.

Linde bietet mehr – wir bieten Mehrwert, spürbare Wettbewerbsvorteile und erhöhte Profitabilität. Jedes Konzept wird exakt auf die Bedürfnisse unserer Kunden abgestimmt. Individuell und maßgeschneidert. Das gilt für alle Branchen und für jede Unternehmensgröße.

Wer heute mit der Konkurrenz von morgen mithalten will, braucht einen Partner an seiner Seite, für den höchste Qualität, Prozessoptimierungen und Produktivitätssteigerungen tägliche Werkzeuge für optimale Kundenlösungen sind. Partnerschaft bedeutet für uns jedoch nicht nur wir für Sie – sondern vor allem wir mit Ihnen. Denn in der Kooperation liegt die Kraft wirtschaftlichen Erfolgs.

Linde – ideas become solutions.

Für Sie einheitlich erreichbar – bundesweit in Ihrer Nähe.

Ihre Linde Gas Kundenbetreuung.

Telefon 01803.85000-0* Telefax 01803.85000-1*

Scannen Sie den QR-Code und erfahren Sie alles über die Spezialgase von Linde.

PanGas AG

Hauptsitz, Industriepark 10, 6252 Dagmersellen, Schweiz, Telefon +41.844.800-300, www.pangas.ch

Linde Gas GmbH

Carl-von-Linde-Platz, 4651 Stadl-Paura, Österreich, Telefon +43.50.4273, www.linde-gas.at

Linde AG

Gases Division, Linde Gas Deutschland, Seitnerstraße 70, 82049 Pullach, www.linde-gas.de

